مقایسه سه فرایند اکسیداسیون پیشرفته در حذف مواد آلی از چربی

کارخانه کمبوست اصفهان

بهروز کرمی، محمد حسن اجواموش، مهدی مختاری، اصغر زریسفی

نوبت‌نامه سنگین اراک، میدان سنگی، دانشکده علوم پزشکی، دانشگاه بهداشت، گروه بهداشت محیط ایران

کلید واژه‌های بیشتر

روش بررسی: نمونه‌بندی به وسیله نمونه‌برداری تصادفی انجام شد و به‌طور پیوسته خنک‌ساز

میزان ماده 30000 و 90 دقیقه قرار گرفت. نمونه در 18 مراحل از برکه‌های ذخیره شرایط در کارخانه کمبوست اصفهان به حجم ۲۰ لیتری توزیع شد. از اکسیداز خالص و فعالیت آن هیدروژن به عنوان WAO/GAC و WPO استفاده شد.

عملکرد اکسیداسیون استفاده شد.

WPO نسبت به WAO بهتر بود که در WPO به ارتفاع 39% در حذف مواد آلی و تصفیه نسبت به WAO برازید بهبود حذف مواد آلی و تصفیه WAO/GAC WPO تیپ های GAC و WPO و WPO/GAC برای بهبود حذف مواد آلی و تصفیه نسبت به WAO بهبود شرایط تصفیه بهبود خورید. افراد اولیه از اکسیداسیون اکسیداسیون با هیدروژن، اکسیداسیون با HPO/GAC
مقیاسه سه فرآیند اکسیداسیون پیشرفته فرآیندهای آبی و آلودگی در محیط زیست و سلامتی دارد. شیرازه زیب‌ترین مکان اقتصادی و تجاری ایران است. این مکان به خاطر آب و هوای مطبوع و دوستانه و جویی از اینجا محبوب می‌باشد.

یکی از مباحث پیش‌بینی شده در سال‌های سواحل دریاچه ایران و در ایام سرمایه‌گذاری‌ها، استفاده از تکنیک‌های جدید در پیش‌بینی میزان آلودگی از این آب‌های شیراز بوده است.

مقدمة

روش‌های غیرمستقیم برای اکسیداسیون مروطب با برای ایجاد آلودگی شدید، به‌وسیله تکنیک‌های غیرمستقیم، به‌وسیله اکسیداسیون شیمیایی و شیمی‌های دیگر استفاده می‌شود. ویژگی‌های این روش‌ها در مقایسه با روش‌های دیگر، ثابت شده است. تکنیک‌های خاصی از این روش‌ها شامل تکنیک‌های غیرمستقیم و عامل‌های دیگر است. این روش‌ها به‌وسیله تکنیک‌های غیرمستقیم ثابت شده است. ویژگی‌های این روش‌ها در مقایسه با روش‌های دیگر، ثابت شده است. تکنیک‌های خاصی از این روش‌ها شامل تکنیک‌های غیرمستقیم و عامل‌های دیگر است. این روش‌ها به‌وسیله تکنیک‌های غیرمستقیم ثابت شده است. ویژگی‌های این روش‌ها در مقایسه با روش‌های دیگر، ثابت شده است. تکنیک‌های خاصی از این روش‌ها شامل تکنیک‌های غیرمستقیم و عامل‌های دیگر است. این روش‌ها به‌وسیله تکنیک‌های غیرمستقیم ثابت شده است.
بهوروز کرمی و همکاران

جدول 1: چگونگی برهه برداری از راکتور با روش WAO

<table>
<thead>
<tr>
<th>ترکیب اکسید کندن</th>
<th>اکسید خالص</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 bar</td>
<td></td>
</tr>
<tr>
<td>دما</td>
<td>300 °C</td>
</tr>
<tr>
<td>حجم راکتور و نمونه</td>
<td>سه لیتر و حجم نمونه CC</td>
</tr>
<tr>
<td>مدت زمان انجام واکنش مطلوب</td>
<td>90 دقیقه</td>
</tr>
<tr>
<td>طول مدت سرد شدن راکتور</td>
<td>2-3 ساعت</td>
</tr>
</tbody>
</table>

در ایجاد شرایط استیسی میجح قبل از ورود نمونه به WAO داخل راکتور است. پس از تزریق 1/5 Lit نمونه به راکتور به ایجاد نتایج کاذب در آزمون COD از روش تجزیه شیمیایی با CO2 افزوده استفاده شد. سرعت تجزیه پراکسید هیدروژن با افزایش pH افزایش می‌یابد. جهت تعیین نمونه های فعال با مدیره بیمار بالای پراکسید هیدروژن ممکن است نیاز به افزایش pH برای افزایش pH نتایج انتظاری بالا تا 0/21 و آزم است. خواص بی‌مقداری مقداری معنی‌دار از COD برای افزایش pH نتایج انتظاری به عنوان نمونه به تغییرات افزایش pH در نمونه خروجی استفاده شد. لازم به ذکر است، افزایش pH هیچ تاثیری بر تبدیل مواد آلی در نمونه نخواهد داشت(11).

WAO/GAC روش

راکتور مورد استفاده در این روش دارای خصوصیات مشابه با WAO است. به راکتور مقدار 2 g/L است. به راکتور مواده به حجم 15/4 وارد راکتور شده و با تنظیم مقدار pH هوا و روزه فشار درونی روی 10 تنظیم شد. چگونگی بهره برداری از راکتور با روش WAO جدول 1 آمده است.

WPO روش

راکتور مورد استفاده برای روش WPO نیز دارای خصوصیات مشابه است. وکسری اکسیداسیون با پراکسید هیدروژن در راکتور تحت فشار بالا (10 میلی وات) 1) انجام گرفته، 6) آمده است.

روش WPO

راکتور مورد استفاده برای روش WPO نیز دارای خصوصیات مشابه است. وکسری اکسیداسیون با پراکسید هیدروژن در راکتور تحت فشار بالا (10 میلی وات) 1) انجام گرفته، 6) آمده است.

روش WPO

راکتور مورد استفاده برای روش WPO نیز دارای خصوصیات مشابه است. وکسری اکسیداسیون با پراکسید هیدروژن در راکتور تحت فشار بالا (10 میلی وات) 1) انجام گرفته، 6) آمده است.

روش WPO

راکتور مورد استفاده برای روش WPO نیز دارای خصوصیات مشابه است. وکسری اکسیداسیون با پراکسید هیدروژن در راکтор تحت فشار بالا (10 میلی وات) 1) انجام گرفته، 6) آمده است.

روش WPO

راکتور مورد استفاده برای روش WPO نیز دارای خصوصیات مشابه است. وکسری اکسیداسیون با پراکسید هیدروژن در راکتور تحت فشار بالا (10 میلی وات) 1) انجام گرفته، 6) آمده است.

روش WPO

راکتور مورد استفاده برای روش WPO نیز دارای خصوصیات مشابه است. وکسری اکسیداسیون با پراکسید هیدروژن در راکتور تحت فشار بالا (10 میلی وات) 1) انجام گرفته، 6) آمده است.

روش WPO

راکتور مورد استفاده برای روش WPO نیز دارای خصوصیات مشابه است. وکسری اکسیداسیون با پراکسید هیدروژن در راکتور تحت فشار بالا (10 میلی وات) 1) انجام گرفته، 6) آمده است.
مقایسه فرآیند اکسیداسیون پیشرفته فرذد

از جداول پیداکردن که در دماهای بالاتر از 100 ℃ تجزیه مواد آلی و تولید محصولات تهیه (H₂O و CO₂) افزایش می‌یابد. WAO در دمای 300 ℃ و زمان ماند 90 دقیقه در روش غلظت COD را به مقدار 173 g/L کاهش یافت که بیانگر گزارش‌هایی از دیدگاه ال‌ای بنجمن در روش WAO/GAC در هینه سریاکار راندمان حذف قد و بقیه ای است. با این وجود، هیچ گاه قابل تکرار تعدادی در این آزمایشات بیان شده است. به هر حال کاهش شرایط بهره‌برداری رولافازیش می‌یابد.

فارناد WPO

با افزایش دما و زمان ماند غلظت را در فرآیند WPO بهبود یافت. به این ترتیب که در دمای 300 ℃ زمان ماند 90 دقیقه و غلظت 5 H₂O، راندمان حذف به مقدار 39/8 (COD) کاهش یافت. با این شرایط، راندمان حذف در WPO باید به مقدار 47/8 (BOD) و غلظت‌های WPO باید به مقدار 60 (min) زمان ماند 90-30 دقیقه انجام شد. در جدول 2 راندمان حذف پارامترهای مختلف توسط هر فرآیند در دما و زمان های ماند مختلف بررسی شده است.

فارناد WAO و فرآیند ترکیبی WAO/GAC

در جدول 2 و 3 تغییرات دما و زمان ماند در راندمان حذف WAO، WAO/GAC و COD در سه روش BOD و اهمیت آنها به پارامتر افزایش دیده شد. WPO و GAC

پایه‌پاره‌پدید کردن (WAO) با P-value اکسیداسیون مزینگ با اکسیداسیون بالاتر و فرآیند ترکیبی WAO/GAC در دما و زمان های ماند مختلف

<table>
<thead>
<tr>
<th>Rosh</th>
<th>WAO/GAC</th>
<th>WAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ℃</td>
<td>100 ℃</td>
<td>100 ℃</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>روش</th>
<th>دما (min)</th>
<th>زمان (min)</th>
<th>COD</th>
<th>BOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>113/3</td>
<td>90</td>
<td>90</td>
<td>79/4</td>
<td>90</td>
</tr>
</tbody>
</table>
جدول ۳: راندمان حذف (٪) پارامترهای مختلف توسط فرآیند اکسیداسیون مرطوب با پراکسید هیدروژن (WPO/WAO/GAC) در دمای و زمان های ماند مختلف

<table>
<thead>
<tr>
<th>تا پیش بینی (ppm)</th>
<th>2/5 ppm</th>
<th>1 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه حرارت (°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>دما (min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>زمان (د)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

در حالت که با روش چندان غلیب WPO در این روش WPO چنان تغییر WPO در این ر shorthand1}
نتیجه گیری

این مطالعه در مورد فرآیند اکسیداسیون به‌خصوص مربوط به WAO، WPO و BOD انجام گرفته و به‌کارگیری کریستال فعال دانای ای همراه با WAO و به‌کارگیری اکسیداسیون کم‌یوتکس است. نمونه‌برداری شیرین در ای پذیرفته در pH و تیغه اکسیداسیون بیولوژیکی پایین است.

WAO فرآیند اکسیداسیون به‌خصوص مربوط به pH و تیغه اکسیداسیون بیولوژیکی است. به‌طور متوسط، این مقدار pH و تیغه اکسیداسیون بیولوژیکی کم است. برای به‌کارگیری کریستال فعال، فرآیند اکسیداسیون بیولوژیکی نیاز به وجود چندین مقدار pH و تیغه اکسیداسیون بیولوژیکی کم است. در طی این فرآیند ممکن است تیغه اکسیداسیون بیولوژیکی کم به نظر می‌آید. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

فیشینگ و WPO روش WPO در بسیاری از فرآیندهای متغیر در pH و تیغه اکسیداسیون بیولوژیکی می‌باشد. در مواردی که مقدار pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15)، ممکن است تیغه اکسیداسیون بیولوژیکی کم به نظر می‌آید. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

فرآیند اکسیداسیون به‌خصوص مربوط به pH و تیغه اکسیداسیون بیولوژیکی است. به‌طور متوسط، این مقدار pH و تیغه اکسیداسیون بیولوژیکی کم است. برای به‌کارگیری کریستال فعال، فرآیند اکسیداسیون بیولوژیکی نیاز به وجود چندین مقدار pH و تیغه اکسیداسیون بیولوژیکی کم است. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

در مطالعه Abubaka et al. (12) روی حشمت دانایی کلیک در پرداختن اثرات فعال به‌کارگیری اکسیداسیون مربوط با هوا انجام شد به‌طور متوسط pH و تیغه اکسیداسیون بیولوژیکی کم است. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

فیشینگ و WPO روش WPO در بسیاری از فرآیندهای متغیر در pH و تیغه اکسیداسیون بیولوژیکی می‌باشد. در مواردی که مقدار pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15)، ممکن است تیغه اکسیداسیون بیولوژیکی کم به نظر می‌آید. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

در مطالعه Abubaka et al. (12) روی حشمت دانایی کلیک در پرداختن اثرات فعال به‌کارگیری اکسیداسیون مربوط با هوا انجام شد به‌طور متوسط pH و تیغه اکسیداسیون بیولوژیکی کم است. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

فیشینگ و WPO روش WPO در بسیاری از فرآیندهای متغیر در pH و تیغه اکسیداسیون بیولوژیکی می‌باشد. در مواردی که مقدار pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15)، ممکن است تیغه اکسیداسیون بیولوژیکی کم به نظر می‌آید. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

فیشینگ و WPO روش WPO در بسیاری از فرآیندهای متغیر در pH و تیغه اکسیداسیون بیولوژیکی می‌باشد. در مواردی که مقدار pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15)، ممکن است تیغه اکسیداسیون بیولوژیکی کم به نظر می‌آید. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

فیشینگ و WPO روش WPO در بسیاری از فرآیندهای متغیر در pH و تیغه اکسیداسیون بیولوژیکی می‌باشد. در مواردی که مقدار pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15)، ممکن است تیغه اکسیداسیون بیولوژیکی کم به نظر می‌آید. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).

فیشینگ و WPO روش WPO در بسیاری از فرآیندهای متغیر در pH و تیغه اکسیداسیون بیولوژیکی می‌باشد. در مواردی که مقدار pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15)، ممکن است تیغه اکسیداسیون بیولوژیکی کم به نظر می‌آید. در طی این فرآیند pH متوسط 4.32 در ورودی و pH متوسط 3.1 در خروجی کاهش می‌یابد (15).
کوچکتر تجزیه می‌شود. افزایش تعداد مولکول‌ها در محیط موجب افزایش سطح نماش این ترکیبات آلی با دی شرکت عمده‌ای در مورد استفاده آن‌ها در انزیم‌های GAC می‌گردد و موجب افزایش COD می‌شود.

COD در ترکیب با

GAC به‌پهپندانه با کاهش بهره‌برداری و بهبود کیفیت آب و هوا در محیط آب‌های رودخانه و در محیط آب‌های با کاهش درصدی. این کاهش بهره‌برداری و بهبود کیفیت آب و هوا در محیط آب‌های رودخانه و در محیط آب‌های با کاهش درصدی. این کاهش بهره‌برداری و بهبود کیفیت آب و هوا در محیط آب‌های R.O و H.S

کودرگز، E. M

Cezar Catrinescu

RO-22,4Y' %Z2 bM (Ü Ü*:E3$ aÜ ÜE'4Y'

7Y bE4S^ …'7$ bE4S^ aE'4Y' l(Ü Ü&3$ bE4S^ -LJˆ7G K:Ü ÜU+,-. @2 K:Ü ÜU+,-. @2

نیرو هیدروژن ترکیبی را تشکیل می‌دهد که به راحتی به‌طور روزانه این ترکیبات آلی را تجزیه می‌کند.

کودرگز، E. M

Cezar Catrinescu

RO-22,4Y' %Z2 bM (Ü Ü*:E3$ aÜ ÜE'4Y'

7Y bE4S^ …'7$ bE4S^ aE'4Y' l(Ü Ü&3$ bE4S^ -LJˆ7G K:Ü ÜU+,-. @2 K:Ü ÜU+,-. @2

نیرو هیدروژن ترکیبی را تشکیل می‌دهد که به راحتی به‌طور روزانه این ترکیبات آلی را تجزیه می‌کند.

کودرگز، E. M

Cezar Catrinescu

RO-22,4Y' %Z2 bM (Ü Ü*:E3$ aÜ ÜE'4Y'

7Y bE4S^ …'7$ bE4S^ aE'4Y' l(Ü Ü&3$ bE4S^ -LJˆ7G K:Ü ÜU+,-. @2 K:Ü ÜU+,-. @2

نیرو هیدروژن ترکیبی را تشکیل می‌دهد که به راحتی به‌طور روزانه این ترکیبات آلی را تجزیه می‌کند.

کودرگز، E. M

Cezar Catrinescu

RO-22,4Y' %Z2 bM (Ü Ü*:E3$ aÜ ÜE'4Y'

7Y bE4S^ …'7$ bE4S^ aE'4Y' l(Ü Ü&3$ bE4S^ -LJˆ7G K:Ü ÜU+,-. @2 K:Ü ÜU+,-. @2

نیرو هیدروژن ترکیبی را تشکیل می‌دهد که به راحتی به‌طور روزانه این ترکیبات آلی را تجزیه می‌کند.

کودرگز، E. M

Cezar Catrinescu

RO-22,4Y' %Z2 bM (Ü Ü*:E3$ aÜ ÜE'4Y'

7Y bE4S^ …'7$ bE4S^ aE'4Y' l(Ü Ü&3$ bE4S^ -LJˆ7G K:Ü ÜU+,-. @2 K:Ü ÜU+,-. @2

نیرو هیدروژن ترکیبی را تشکیل می‌دهد که به راحتی به‌طور روزانه این ترکیبات آلی را تجزیه می‌کند.
نتیجه‌های آزمایش و مقایسه‌های توصیفی برای مقایسه سه روش واحد با ANOVA، آماری آماری ثابت مقدار تفاوت، و مقیاس واریانس و توزیع تابع نرمال (یرخی و مقدار 0.05) اختلاف معنی‌داری بین روش‌ها و روش WPO و WAO/GAC را نشان می‌دهد. آزمون t-پایاک 4 نمونه ای مستقل بین WAO/GAC و WAO در روش WPO و روش WAO اختلاف آماری ثابت نشان داده است. آماری تابع نرمال (یرخی و مقدار 0.05) در غرباله‌ای، تغییرات آن در روش اکسیداسیون مرتبط با آزمون WAO/GAC است. این امر ناشی از تأثیر همکاری استفاده از اکسیدان‌های هیدروژن و اکسپونژ در روش WAO و روش WPO از آزمون WAO/GAC بیشترین راندمان حثق مربوط به فرآیند BOD به دلیل احتمال وجود پراکسید هیدروژن در نمونه‌های خروجی روش WPO و اثر سوء آن بر شکست باکتریی در روش WAO است. تغییرات بالای WAO/GAC سنة بیشتر و راندمان حثق با داشتن در WPO نمی‌تواند با در روش WAO/GAC تأثیر قابل توجه با داشتن WPO و راندمان حثق با داشتن دارای اثر در WAO/GAC تأثیر قابل منجر به به دست آمده با آزمون آماری آماری تابع نرمال (یرخی و مقدار 0.05) ثابت

جدول 4: تأثیرهای توصیفی راندمان حثق BOD و COD در سه روش مورد مطالعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعداد نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>20</td>
</tr>
<tr>
<td>COD</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>روش</th>
<th>هزینه و دوز</th>
<th>WAO</th>
<th>WPO</th>
<th>WAO/GAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>56/27</td>
<td>42/24</td>
<td>58/25</td>
<td>46/24</td>
</tr>
</tbody>
</table>

و ANOVA.


Comparisons of Three Advanced Oxidation Processes in Organic Matter Removal from Esfahan Composting Factory Leachate

karimi B. 1, Ehrampoush M.H. 2, Mokhtari M. 2, Ebrahimi A. 3

1Deptment of Environmental Health, Faculty of Health, Arak University Of Medical Sciences, Markazi Province, Iran
2Deptment of Environmental Health, School of Public Health Shahid Sadoughi University of Medical Science and Health Service, Yazd, Iran
3Deptment of Environmental Health, Faculty of Health, Isfahan University Of Medical Sciences, Isfahan, Iran

Received; 15 February 2011 Accepted; 13 April 2011

ABSTRACT

Backgrounds and Objectives: Wet air oxidation (WAO) is one of the advanced oxidation process which is mostly used to reduce organic matter concentration from industrial wastewater, toxic and non biodegradable substance and solid waste leachate. The objective of this paper is comparisons of three advance oxidation in organic matter removal in different conditions from Esfahan composing factory leachate

Material and Methods: The experiment was carried out by adding 1.5 Lit pretreated leachate sample to 3Lit autoclave reactor and adding 10 bar pressure at temperature of 100, 200 and 300 °C and pressure (10 bars) with retention time of 30, 60 and 90 min. leachate sample in 18 stages from composting factory in Isfahan in the volume of 20 lit was taken and the three methods WAO, WPO, and a combination of WAO/GAC were used for pre-treatments. Pure oxygen and 30% hydrogen peroxide was used as oxidation agent.

Results: The result shows significant improvement on the removal rate of COD (7.8-33.3%), BOD₅ (14.7-50.6%) by WAO process. The removal efficiency of 4.6-34% COD, 24-50% BOD, was observed in the reactor. Adding the GAC to the reactor improved removal efficiency of all parameters. Combination Process (WAO/GAC) removed 48% of COD, 31-43.6% of BOD. Combination process demonstrated higher efficiency than two other previous methods as BOD₅/COD ratio of 90% achieved.

Conclusion: The WAO process presented in this paper is efficient for pretreatment of leachate, And the modified WPO process remove organic materials and ammonia moreover WAO/GAC can be considered as an excellent alternative treatment for removing reluctant organic matter (COD, BOD₅) and organic nitrogen compounds, which found in leachate.

Key words: leachate, Composting factory, Wet air oxidation, peroxide oxidation, Combined oxidation WAO/GAC

*Corresponding Author: karimibehroz@yahoo.com
Tel: +98 9186204589, Fax: +98 861 4173509