حرف فلزات سنگین از محيط آبی توسط جذب سطحی بر روی پوست موز اصلاح شده

دکتر محمد رضا مهراسبی ۱، زهرا فرهمند ۲

نویسندگان: زنگان، دانشگاه علوم پزشکی زنجان، دانشکده بهداشت، گروه بهداشت محیط

دوره اول، شماره اول، پاییز ۱۳۸۷، صفحات ۸۷ تا ۸۸

دیروهات: ۸۷/۲۷/۲۰

پذیرش: ۸۷/۲۷/۴/۴

چکیده

زمینه و هدف: وجود فلزات سنگین در منابع آب از مشکلات مهم زیست محیطی بسیاری از جوامع است. تاکنون روش های مختلفی برای حذف این فلزات مورد توجه قرار گرفته است که استفاده از جاذب های از ارزان قیمت از جمله این روش ها به شمار می رود. هدف از این مطالعه بررسی جذب فلزات سنگین مثل سرب و کادمیم بر روی پوست موز اصلاح شده بعنوان یک جاذب ارزان قیمت می باشد.

روش و روش سنجش: پوست موز با محلولهای HNO3 (۰/۲ مول در لیتر) و NaOH (۰/۲ مول در لیتر) و آب مقطع دوبار تقطیر به طور چندگانه اصلاح شد. نمونه های جاذب سطحی در غلظت های مختلف به روش ایرانی متوفر شد. نمونه های سرب و کادمیم ها در دو روش مختلف جاذب انجام شد. ابزار سنجش جاذب پوسته فلزی بر روی جاذب های تهیه شده از پوست موز براساس آزمون pH، مقدار pH پوست ایزوترمن لانک میتو و به ثبت می نماید.

پایه ها: بهترین روش اصلاح برای جاذب سرب اصلاح باید محلول باریک و با جاذب کادمیم اصلاح با محلول اسیدی بود. حد اکثر ظرفیت جذب سطحی سرب بر روی پوست موز اصلاح شده در محیط باریک ۳۶ میلی گرم بر کیلوگرم و ظرفیت جذب سطحی کادمیم بر روی پوست موز اصلاح شده در محیط باریک ۱۶ میلی گرم بر کیلوگرم بود. جاذب میتو ناشن داد که pH به نسبت ۴ به داده کاهش ظرفیت جذب کاهش می یابد. نتیجه گیری: بر اساس نتایج بدست آمده، بهترین محل ایزوترومن جاذب بر روی پوست موز به برشین است و لیپ کادمیم به قدرت بالاتری صورت می گیرد.

واژگان کلیدی: جذب سطحی، فلزات سنگین، جاذب های ارزان قیمت، پوست موز

۱- دکتر هدادشی، مهندس، استاد دانشگاه بهداشت، دانشگاه علوم پزشکی زنجان، گروه بهداشت محیط
۲- کارشناس شیمی، دانشگاه بهداشت دانشگاه علوم پزشکی زنجان، گروه بهداشت محیط
مقدمه
انتشار فلزات سنگین در محیط زیست که بی‌توجهی به اثرات آن‌ها در بیماری‌ها از مشکلات محیطی در جهان محسوب می‌شود. فلزات سنگین از جمله نموده و جواهرات بیمارها و ناامن‌های مختلف را فرآیندهای مختلف صنعت مانند دوپ، تخلیه و استخراج فلزات از طریق انتشار گازهای آلوده و پاسخگویی در محیط زیست منتشر می‌شوند. این فلزات قابل تجزیه و اثرات سemory آنها در بدن موجودات زندگی مزن می‌باشد.

روش‌های مختلف جهت حذف فلزات سنگین از سایه‌های صنعتی بکار رفته است که از آن جمله می‌توان به روش‌های ترسب شیمیایی، تعمیر بیبیون، جذب سطحی و اکثر معکوس اشاره نمود (3). روش جذب سطحی با توجه به کارایی و کادر آسان‌کننده در پردازش روشهای محدودی شده است (5).

در این روش فلزات سنگین در سطح منافذ گازش یا به در واقع ترکیبات غیرقابل حل در آب می‌باشد. جذب سطحی می‌تواند یکی از جذاب‌ترین مشکلات استفاده قرار گرفته و برای جذب فلزات سنگین و جذب ترکیبات آلی بکار رفته شده است. محققان که فعالیت‌های مربوط به این سایر مواد‌کنارگی می‌باشند از سایش و اثرات مثبت جذب‌های آلی به عنوان جذب‌های دیگری که از این جهت استفاده می‌شود;

فلزات سنگین، کارایی و کادر آسان‌کننده در پردازش روشهای محدودی شده است (5).

در این روش فلزات سنگین در سطح منافذ گازش یا به در واقع ترکیبات غیرقابل حل در آب می‌باشد. جذب سطحی می‌تواند یکی از جذاب‌ترین مشکلات استفاده قرار گرفته و برای جذب فلزات سنگین و جذب ترکیبات آلی بکار رفته شده است. محققان که فعالیت‌های مربوط به این سایر مواد‌کنارگی می‌باشند از سایش و اثرات مثبت جذب‌های آلی به عنوان جذب‌های دیگری که از این جهت استفاده می‌شود;

فلزات سنگین، کارایی و کادر آسان‌کننده در پردازش روشهای محدودی شده است (5).

در این روش فلزات سنگین در سطح منافذ گازش یا به در واقع ترکیبات غیرقابل حل در آب می‌باشد. جذب سطحی می‌تواند یکی از جذاب‌ترین مشکلات استفاده قرار گرفته و برای جذب فلزات سنگین و جذب ترکیبات آلی بکار رفته شده است. محققان که فعالیت‌های مربوط به این سایر مواد‌کنارگی می‌باشند از سایش و اثرات مثبت جذب‌های آلی به عنوان جذب‌های دیگری که از این جهت استفاده می‌شود;

فلزات سنگین، کارایی و کادر آسان‌کننده در پردازش روشهای محدودی شده است (5).
آزمایشات ژذب

ابدا غلظت‌های مختلف محلول‌های فلزات سنگین سرب و کادمیم نهش یافتند. مقدار مشخص پوست مو‌های آماده شده به عنوان جاذب به ارزش‌های واگردآوری 100 میلی لیتر محلول به فلز افزوده شد و توسط همست به مدت 3 ساعت با سرعت 180 دور در دقیقه همست شد. زمان ماند 3 ساعت جذب محلول‌های با جاذب‌های طبیعی توسط پس از محتوای مختلف آزمایشات متعدد تشخیص داده شده است (10-16).

اگر تعبیر ژذب‌های محلول‌های جاذب بیراهه و pH بهینه‌ی محلول‌های جاذب در خاک در آزمایشات بعدی به استفاده کلیه آزمایش‌های جذب جهت تعیین از ورودی pH و دور جاذب بهینه‌ی خاک انجام شد.

در آزمایش‌های ژذب محلول‌های جاذب مناسب محلول‌های جاذب از مولی می‌باشد و در مورد سرب در غلظت‌های کمتر از 20 غلظت بالا‌پا و از حذف ترانس روش اداسه گیری (ژذب انت شعله ای) کمتر بود که نتایج حاصل از غلظت‌های بالاتر از 20 در تحلیل نتایج مطلوب شد. کلیه آزمایش‌های جاذب در 5 غلظت انجام شد. در کلیه آزمایش‌ها جاذب هر غلظت در 2 ارلن جداگانه تهیه و فراذای یابان بعدی روى انتها انجام و میانگین نتایج لیست شد.

پس از اتمام عمل همچنین محلول دون انرژی مورد استفاده گذاشتند تا فاز جامد و مایع از یکدیگر جداسازی شود. غلظت سرب و کادمیم قبل وبعد از از توسط 2 ژذب دانه‌ای تری‌گرم pH اجزای بیشتر.

پس از اتمام عمل همچنین محلول دون انرژی مورد استفاده گذاشتند تا فاز جامد و مایع از یکدیگر جداسازی شود. غلظت سرب و کادمیم قبل وبعد از از توسط 2 ژذب دانه‌ای تری‌گرم pH اجزای بیشتر.

آزمایش‌های ژذب محلول‌های فلزات سنگین سرب و کادمیم حل شده در محیط آب بر روی پوست مو مورد بررسی قرار گرفته است. جهت اصلاح پوست مو از آب فلز و با استفاده شده و ژذب‌های مورد ارزیابی قرار گرفته است. اثرات غلظت‌های اولیه پوست فلزی، در جاذب و pH در میزان جذب بررسی شده است و همچنین با استفاده از مدل‌های آزمایش‌های جاذب در خاک و pH در جاذب به استفاده از این مدل‌های مورد تجزیه و تحلیل قرار گرفته است.

مواد و روش‌ها

آماده‌سازی جاذب و مواد
پوست موز ابتدا در محوطه خشک شده و پس از خرد کردن به تکه‌های کوچک با استفاده از آب لیزر تقطیع شده و داده شد. سپس به مدت 24 ساعت در آب سرد حفظ و در حرارت 4000 درجه خشک و پس از خشک شدن به تبلیغ شده. کلیه مواد شیمیایی استفاده شده در این تحقیق از امکار مرکز و از نوع آزمایشگاهی بودند.

جهت تعیین محلول‌های حاصل سرب و کادمیم از تکه‌های فلزی استفاده شده است. از محلول‌های Cd(NO₃)₂ و Pb(NO₃)₂ pH جهت تنظیم NaOH و HCl روی اصلاح جاذب

دانه‌های تهیه شده از پوست موز به طور جداگانه ابتدا به pH 4/3 NaOH مدت 4 ساعت در 100 میلی لیتر محلول های مولی در لیتر) و HNO₃ مولد در لیتر) و آب مقتصر دوزر تقطیع خیس‌سازه‌شده شدند. سپس توسط آب مقتصر دوزر تقطیع آب‌کشی شد تا به pH خشک در بررسی می‌شود سپس جاذب به مدت 24 ساعت در حرارت 100 درجه شدند.

59
مدلهای جذب
جهت تحلیل نتایج جذب و بررسی ایزوتروپ های جذب مدل لاینر فردندلیج و مدل داخلی روابط خطا و اصلی آنها به شکل زیر است (۱۹).

مدلهای میتر
رابطه اصلی
مدل خطي
مدل فردندلیج
رابطه اصلی
مدل خطي
مدل پت
رابطه اصلی

راهکارهای متعددی وجود دارد تا برای مدل لاینر ایزوتروپیک، انتخاب نهایی جذب انتقال جریان میزان انتقال جریان باشد.

اداره غلتظین اولیه فلزات و روش های مختلف اصلاح
جذب بر میزان جذب
اثر غلتظین اولیه فلزات بر میزان جذب بر روی جذب های اصلاح شده در شکل ۱ نشان داده شده است. حداکثر مقدار q در مورد جذب سرب و کادمیوم به ترتیب با جذب اصلاح شده با محلول بازی و کالسیده بسته آمده است. حماکر q در تیمارهای سرب ۳۳ تا ۳۳ تیمارهای کادمیوم ۱۶ میلی گرم بر گرم جذب بوده است. هرچه مقداری C۰ افزایش داشته است میزان جذب روی جذب افزایش یافته است. افزایش جذب همگام با افزایش غلتظین اولیه فلز می تواند ناشی از افزایش نیروی انتقال جذب افزایش میزان انتقال جریان باشد.

این پت
راباطه اصلی
مدل خطي
مدل فردندلیج
رابطه اصلی
مدل خطي
مدل پت
رابطه اصلی

کدهای پت در روابط با: q

mg/g

mg/L

C

C

C

ن

لیگ

بیان می‌کند که نشاندهنده نرمال توانده باید تغییر جذب دارد.

L/mg

K

K

فاز و جذب هستند.

آمده است.

.5

.5

.5

.5

.5

.5

.5
پایگاه داده‌های جذب

ایزوترم‌های بیت و لاک میر بوده است. ضرابی همبستگی و دیگر
پارامترهای مدل‌های جذب در جدول ۱ نشان داده شده‌اند.

بحث

همگونه که در شکل ۱ نشان داده شده است نتایج حاصل
از آزمایشات جذب نشان داد که پوست مویهای اصلاح شده با
محکول بازی طرفیت جذب بیشتری نسبت به سرب و پوست
مویهای اصلاح شده با محلول اسیدی طرفیت جذب بیشتری
نسبت به کادمیوم داشته‌اند.

وقتی محلول‌های بارزی در خل و فر جذب های پایه سولوژی

جدول ۱: تأثیر غلظت اولیه پوست موز اصلاح شده با آب فلز (پ) محلول اسیدی (Δ) و محلول بازی (▲)

<table>
<thead>
<tr>
<th>Pb^{2+}</th>
<th>Cd^{2+}</th>
<th>فلز</th>
<th>دجزاچ (mg/g)</th>
<th>q (mg/g)</th>
<th>%A</th>
<th>q (mg/g)</th>
<th>%A</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۰</td>
<td>۲۶</td>
<td>۱</td>
<td>۶۰</td>
<td>۵۳</td>
<td>۲</td>
<td>۱۴</td>
<td>۲</td>
</tr>
<tr>
<td>۴۴</td>
<td>۲۳</td>
<td>۱</td>
<td>۶۶</td>
<td>۵۴</td>
<td>۳</td>
<td>۱۰</td>
<td>۳</td>
</tr>
<tr>
<td>۲۵</td>
<td>۱۰</td>
<td>۵</td>
<td>۵۴</td>
<td>۲۸</td>
<td>۳</td>
<td>۴۰</td>
<td>۴</td>
</tr>
<tr>
<td>۱۷</td>
<td>۲۴</td>
<td>۳</td>
<td>۴۸</td>
<td>۱۸</td>
<td>۵</td>
<td>۸۶</td>
<td>۶</td>
</tr>
</tbody>
</table>

شکل ۲: نتایج pH بر مبنای حجم جذب بر روی پوست موز اصلاح شده

ایزوترم‌های جذب

جهت تعیین ایزوترم‌های جذب از پوست مویهای اصلاح شده به علاوه جذب استفاده شد آزمایش‌ها در pH ۴ و با
غلظت اولیه مختلف از پوست مویهای فلزی (C_{i}) انجام شد.

در اشکال ۳ و ۴ مدل‌های خلاصه ایزوترم‌های لاک و
فرودنلبیک و بت بر روی داده‌های حاصل از آزمایش‌ها جذب
سرب و کادمیوم بر روی جذب تهیه شده از پوست موز اصلاح
شده نشان داده شده است. بهترین نتایج جذب برای جذب سرب
و کادمیوم ایزوترم فرودنلبیک بوده است. ضریب همبستگی
در ایزوترم فرودنلبیک برای جذب سرب و کادمیوم به ترتیب
در R^2=0.۹۴۱ و ۰.۹۴۸/۰ یکدست آمده است که بالاتر از مقادیر

۰.۹۰۰
جدول 2: پارامترهای ضریب همبستگی مدل‌های ایزوتروم جذب سرب و کادمیم در رُی‌پوست‌های اصلاح شده

<table>
<thead>
<tr>
<th>یون فلزی</th>
<th>بیت</th>
<th>لانک میر</th>
<th>فروند لیج</th>
<th>ایزوتروم</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_0</td>
<td>q_0</td>
<td>R^2</td>
<td>K_L</td>
</tr>
<tr>
<td>سرب</td>
<td>3/56</td>
<td>0/40</td>
<td>0/1565</td>
<td>0/1249</td>
</tr>
<tr>
<td>کادمیم</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21. Gurgel LVA, Junior OK, Gil RPF, Gil LF. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solution by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresource Technology. 2008; 99: 3077-3083

Heavy Metal Removal from Aqueous Solution by Adsorption on Modified Banana Shell

*M. Mehrasbi, Z. Farahmand kia
1Department of Environmental Health, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran

Received 15 October 2008; Accepted 16 December 2008

ABSTRACT

Background and Objectives: Heavy Metals in Water resources is one of the most important environmental problems of countries. Up to now various methods of removing of these metals is considered, which is including using of low prices materials. In this study the potential of banana shells was assessed for adsorption of heavy metal ions such as Pb$^{2+}$ and Cd$^{2+}$ from aqueous solution.

Materials and Methods: Banana shells were pretreated separately with 0.4 mol/L NaOH, 0.4 mol/L HNO$_3$ and distilled water and their adsorption ability were compared. Batch adsorption experiments were carried out as a function of the initial ion concentration, pH and adsorbent dosage. Adsorption isotherms of metal ions on adsorbents were determined and correlated with common isotherm equations such as Langmuir, Freundlich and BET models.

Results: The maximum adsorption capacities were achieved by alkali modified banana shells (36 mg/g) for Pb$^{2+}$ and by acidic modified banana shells (16 mg/g) for Cd$^{2+}$. Experimental results showed that the best pH for adsorption was 6 and the adsorption values decreased with lowering pH. Isotherm models indicated best fit for Freundlich model for modified banana shells.

Conclusion: In comparing the parameters of models, it was observed that the capacity of banana shells for adsorption of lead is higher than for adsorption of cadmium, but the adsorption of cadmium is stronger than the adsorption of lead.

Keywords: Adsorption; heavy metal; low cost adsorbent; banana shell; plant waste