بررسی غلظت فلزات سنگین در چاه‌های آب مجاور کارخانه سرب و رود زنجان

مهران حبیبیان; دکتر جعفر نوری; ناصر افشاری; جلیل نصیری; معصومه نورانی
nourijafar@gmail.com
نویسنده: مهران، دانشگاه علوم پزشکی تهران، دانشکده بهداشت، گروه مدیریت بهداشت محیط
دریافت: 8/9/18
پذیرش: 8/8/18

چکیده
زمینه و هدف: آلودگی های زیست محیطی مؤثر بر سلامت انسان یکی از تغییرات مهم در رابطه با تغییرات محیطی و نوسانات فاصله فلزات سنگین می‌باشد. این آلودگی ها شامل خاک، آب های سطحی و زیرزمینی و رسوبات می‌باشد. این بررسی با هدف تعیین غلظت فلزات سرب، روی و کادمیم در منابع آب مجاور کارخانه‌ی سرب و رود زنجان انجام شده است.
روش بررسی: در این مطالعه توصیفی – مقطعی در زمستان 1384 از 17 حلقه چاه آب آشامیدنی نمونه برداری و نمونه‌های نسبی به روش استاندارد و تغییرات جدید نکست‌کارآمیش قرار گرفته، موقعیت و جاهای نور در توزیع فلزات مکان یابی و قیاس این نظریه شد. کلیه چاه‌های آب در فاصله 1 کیلومتری کارخانه‌ای انتخاب شدند و حساسیت‌ها فلز‌های فلزی از کارخانه‌های نیز مطالعه شد.

یافته‌ها: داده‌ها نشان داد که نقاط سرب و کادمیم به ترتیب در 90% و 53 درصد نمونه‌ها فراوانی از حد میانگین سازمان جهانی بهداشت بودند. غلظت رود در کلیه نمونه‌ها یا پایینتر از حد میانگین بود.

نتیجه‌گیری: به دلیل اهمیت بهداشتی فلزات سنگین صورتی است مطالعات جامع برای ارزیابی تغییر فلزات در محیط‌های هوریک، و بیولوژیکی انجام و بر راه باقی مانده است، نهایت مطالعه‌ای برای تعیین زمان برود و شیوع امراض های مربوط به فلزات سنگین در منطقه مهم به نظر می‌رسد.

واژگان کلیدی: فلزات سنگین، آلودگی زیست محیطی، آب آشامیدنی، کارخانه‌های سرب و رود.

1- دانشجوی دکترای بهداشت محیط، دانشگاه بهداشت بهداشت باکریه علوم پزشکی تهران و عضو هیأت علمی دانشکده بهداشت زنجان
2- استاد دانشگاه بهداشت بهداشت باکریه علوم پزشکی تهران
3- کارشناس بهداشت محیط مرکز بهداشت استان زنجان
4- مری مهندسی علوم پزشکی زنجان، گروه بهداشت عمومی
غلظت فلزات سنگین در چاه‌های آب...

مقدمه
آلدودگی‌های میکرو‌مئوسی مؤثر بر سلامت انسان‌پکی از نگرانی‌های عمده در رابطه با فعالیت صنایع فلزات سنگین می‌باشد و از جمله متغیرهایی می‌باشد که آلدودگی خاک و آب است. آلدودگی خاک اب‌های سطحی و رودخانه‌ها در مناطق مختلفی از کشور را پس از فعالیت‌های صنایع مشاهده کرده است. آلدودگی آب‌های زیرزمینی نیز به دلیل نفوذ آب‌های سطحی و مهاجرت فلزات از طریق خاک می‌باشد (1). بر اساس موارد سیمی و لایت بیماری‌های ایالتی مبتنی بر نتایج تحقیق با خاک سطحی آسیب بهداشتی می‌بینند، فهمیده‌ای از سایت‌های سنجش فلزات نهی کرده و گزارش نموده است. فلزات می‌توانند از خون کودکانی که در مناطق آلوده زندگی می‌کنند باعث اکثریت این اسهال‌ها باشد. 

مواد و روش‌ها
در این پژوهش توصیفی-مقطعی در زمستان 1386 تعداد 17 نمونه آب از 17 حلقه چاه تأمین کننده آب شرب که روی آبخوان زنجان حفر شده و تا فاصله 10 کیلومتر از آبخوان سرب و روی قرار داشته، برداشتند. حجم نمونه‌ها هزار و بانصد میلی لیتر، جنس توزیع، تعداد زمان‌بندی و نگهداری، آب‌کوبی و تعداد کیلوگرم کربنات و ورود یافتن هوا به بکم کمک‌مکانیک بای‌جهانی (GPS) تعیین شد. نمونه‌ها در این تحقیق با هر سرب‌بندی شده‌اند، جمع آوری و به آزمایشگاه منتقل و در اولین فرصت با روش استاندارد‌سازی‌گذار SPSS مورد تحلیل قرار گرفتند (20). مسیر داده‌ها با استفاده از نمود افزار آماری M و اطلاعات حاصل با مواردی که کیفیت آپ اشامیدنی در سطح ملی و فرا ملی مقایسه شده و از آزمون‌های آماری آماری منجر به نتایج استفاده گردید.

نتایج
در یک هفته حاضر تعداد 17 حلقه چاه آب این حلقه در کیلومتر مورد مطالعه قرار گرفت. حداکثر فاصله این جاهای 7500 متر به مرکزیت شرکت سرب و روی بود. موقعیت این چاه‌ها و غلظت آن فلزات در نمونه‌های حاصله در جدول شماره 1 ارائه شده است. 

معیارهایی که اطلاعات حاصله از آزمایش‌های بر اساس آن ها مورد ارزیابی بهداشتی و کیفیت قرار گرفت شامل استانداردهای آب اشامیدنی ایران، ره‌نمودهای کیفیت آپ اشامیدنی سازمان به ورودی بررسی غلظت فلزات سنگین در منابع آب، بیوژه منابع نزدیک آبخوان سرب و روی برداخته است.

References:
جدول ۱: مشخصات مکانی چا‌ها و غلظت فلزات سنگین در تمونه‌های مجاور کارخانه سروب و روی

<table>
<thead>
<tr>
<th>شماره جاه</th>
<th>موقتیت جغرافیایی (UTM)</th>
<th>فاصله از کارخانه (m)</th>
<th>غلظت روی mg/L</th>
<th>غلظت سروب mg/L</th>
<th>غلظت کادمیم mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X: 343670</td>
<td>178</td>
<td>0.31</td>
<td>0.16</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>X: 343600</td>
<td>123</td>
<td>0.11</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>X: 343500</td>
<td>245</td>
<td>0.50</td>
<td>0.14</td>
<td>0.23</td>
</tr>
<tr>
<td>4</td>
<td>X: 343400</td>
<td>114</td>
<td>0.38</td>
<td>0.10</td>
<td>0.21</td>
</tr>
<tr>
<td>5</td>
<td>X: 343300</td>
<td>321</td>
<td>0.50</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>X: 343200</td>
<td>290</td>
<td>0.31</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>X: 343100</td>
<td>315</td>
<td>0.21</td>
<td>0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>8</td>
<td>X: 343000</td>
<td>246</td>
<td>0.16</td>
<td>0.09</td>
<td>0.14</td>
</tr>
<tr>
<td>9</td>
<td>X: 342900</td>
<td>193</td>
<td>0.27</td>
<td>0.13</td>
<td>0.10</td>
</tr>
<tr>
<td>10</td>
<td>X: 342800</td>
<td>297</td>
<td>0.37</td>
<td>0.15</td>
<td>0.22</td>
</tr>
<tr>
<td>11</td>
<td>X: 342700</td>
<td>255</td>
<td>0.21</td>
<td>0.12</td>
<td>0.17</td>
</tr>
<tr>
<td>12</td>
<td>X: 342600</td>
<td>224</td>
<td>0.18</td>
<td>0.11</td>
<td>0.14</td>
</tr>
<tr>
<td>13</td>
<td>X: 342500</td>
<td>158</td>
<td>0.20</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>14</td>
<td>X: 342400</td>
<td>121</td>
<td>0.16</td>
<td>0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>15</td>
<td>X: 342300</td>
<td>120</td>
<td>0.18</td>
<td>0.11</td>
<td>0.15</td>
</tr>
<tr>
<td>16</td>
<td>X: 342200</td>
<td>103</td>
<td>0.16</td>
<td>0.10</td>
<td>0.13</td>
</tr>
<tr>
<td>17</td>
<td>X: 342100</td>
<td>92</td>
<td>0.15</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>18</td>
<td>X: 342000</td>
<td>74</td>
<td>0.14</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>19</td>
<td>X: 341900</td>
<td>62</td>
<td>0.14</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>20</td>
<td>X: 341800</td>
<td>50</td>
<td>0.14</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>21</td>
<td>X: 341700</td>
<td>45</td>
<td>0.14</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>22</td>
<td>X: 341600</td>
<td>40</td>
<td>0.13</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>23</td>
<td>X: 341500</td>
<td>36</td>
<td>0.13</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>24</td>
<td>X: 341400</td>
<td>30</td>
<td>0.13</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>25</td>
<td>X: 341300</td>
<td>25</td>
<td>0.13</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>26</td>
<td>X: 341200</td>
<td>20</td>
<td>0.12</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>27</td>
<td>X: 341100</td>
<td>15</td>
<td>0.12</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>28</td>
<td>X: 341000</td>
<td>10</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>29</td>
<td>X: 340900</td>
<td>5</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>30</td>
<td>X: 340800</td>
<td>0</td>
<td>0.11</td>
<td>0.10</td>
<td>0.11</td>
</tr>
</tbody>
</table>

جهانی بهداشت و استانداردهای اولیه سازمان حفاظت محیط زیست ایالات متحده بندی که در جدول شماره ۲ مقادیر آنها ارائه شده است. خاصیت ارتباط بین غلظت فلزات سنگین با کدکی در تمونه‌ها بررسی و مورد بحث و نتیجه‌گیری فرا گرفت.

سنگین نیز بررسی شد که نتایج آن ها در شکل های شماره ۱ تا ۳ ارائه شده است، علاوه بر این پس از آزمون‌های آماری تایتی حاصل ارتباط بین غلظت فلزات سنگین با کدکی در تمونه‌ها به‌رسی و مورد بحث و نتیجه‌گیری فرا گرفت.

جدول ۲: معیارهای مهم جهت ارزیابی یکی از آشیان‌های از نظر فلزات سنگین

<table>
<thead>
<tr>
<th>سال ۱۹۹۷</th>
<th>استاندارد اولیه آزمایش‌های حفاظت محیط زیست ایالات متحده</th>
<th>رهتم سازمان جهانی بهداشت</th>
<th>استاندارد اولیه سازمان جهانی بهداشت</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب</td>
<td>۰/۰/۵</td>
<td>۰/۰/۵</td>
<td>۰/۰/۵</td>
</tr>
<tr>
<td>روزی</td>
<td>۰/۳</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>کادمیم</td>
<td>۰/۵</td>
<td>۰/۵</td>
<td>۰/۵</td>
</tr>
</tbody>
</table>
هیچ موردی از نمودن‌های غلظت آن از حد استاندارد ایران یا رهگردی سازمان جهانی بهداشتی فرانکرود است. در زمینه فلز کادمیم، ۶۵ درصد موارد (۶ نمونه) بالاتر از حد استاندارد ملی ایران و استاندارد اولیه آمریکا و ۳۵ درصد موارد (۹ نمونه) فراتر از مقدار رهگردی سازمان بهداشتی جهانی بودند. مطلق جدول شماره ۱ میانگین غلظت سرب در حومه کارخانه سرب و روی کمتر از میانگین استاندارد ملی ایران و سازمان حفاظت محیط زیست آمریکا و پیشرفت از مقدار رهگردی سازمان بهداشتی جهانی بود. این در حالت است که میانگین غلظت کادمیم در بهداشتی بودند.

استادیه‌یی غلظت فلزات سرب، روی و کادمیم در آب آشامیدنی نمودن‌ها بررسی شد و همچنین غلظت سرب در حومه کارخانه سرب و روی کادمیم میانگین می‌باشد. همچنین نمودن‌های در محل‌های پر انتقال میان‌فصل‌های اتصالی به هوا و یا غلظت‌های بکر از فلزات بررسی شد و به لحاظ آماری همبستگی بین غلظت روی و کادمیم در آب و فصله به‌ویژه در آب‌های از کارخانه ملاحظه شد. در مقایسه نمودن‌های داد که غلظت سرب و فصله به‌ویژه از کارخانه همبستگی معنی‌داری در سطح کمتر از ۰/۲ با میانگین مقدار دارد. بدین معنی که با افزایش فصله از کارخانه، غلظت سرب آب کاهش می‌یابد. این نتایج نشان می‌دهد که مطالعات غرور تهیه دانشگاه علوم پزشکی تهران نشان داده که در سال ۱۳۷۵ ۱۷۹ فلزات سرب و کادمیم در آب های زیرزمینی منطقه کارخانه به‌لحاظ دستگاهی غیرقابل شناسایی بودند. نمودن‌های غلظت آن در سطح کمتر از حد استاندارد ملی نبوده است. در نتیجه آزمایش نمودن‌های روی آب آشامیدنی کارخانه سرب و روی نیز در سال‌های ۱۳۶۷ مقدار غلظت سرب و کادمیم را به‌ویژه در کریم‌کاران نمودن‌هادند (۱/۳). به‌ویژه از آن در سال‌های ۱۳۷۱–۹۷ یافته‌ها به‌ویژه در دریابند که روی کمک آب هوا کارخانه سرب را به‌ویژه در کیلومتر انجام دادند. نشان دادند. غلظت سرب و کادمیم

بحث

نتایج مطالعه حاضر نشان داد که غلظت سرب در هنگ نمودن‌های فراتر از حد استاندارد ملی نبست حالت آنکه غلظت آن در مقایسه با رهگردی سازمان جهانی بهداشت در ۶۹ درصد موارد (۱۰ نمونه) تشدید است. در همین رابطه اکثر میانگین مقایسه استاندارد اولیه سازمان حفاظت محیط زیست آمریکا باشد. ۲۹ درصد موارد (تعداد ۵ نمونه) شرایط کمی غیرقابل قبول از نظر سرب دارند. در رابطه با فلز روی در...
Kachenko AG, Singh B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air and Soil Pollution. 2006; 169(1-4):101-123.

Paijitprapapon A. Environmental and public health effects due to contamination from mining industries in Thailand. Seminar on Environmental and Public Health Risks due to Contamination of Soils, Crops, Surface and Groundwater from Urban, Industrial and Natural Sources in South-East Asia, 2002; December 10-12, Hanoi, Viet Nam.


Investigation of Heavy Metals Concentrations in the Water Wells Close to Zanjan Zinc and Lead Smelting Plant

1M. Mohammadian,*2J. Nouri, 3N. Afshari, 3J. Nassiri, 4M. Nourani

1PhD student of the Department of Environmental Health, Tehran University of Medical Sciences, Tehran, Iran and the Academic Staff in Zanjan University of Medical sciences.
2Department of Environmental Health, Tehran University of Medical Sciences
3Zanjan Health Center, Environmental Health Expert, Zanjan, Iran
4Department of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran

Received 22 October 2008; Accepted 7 December 2008

ABSTRACT

Background and Objectives: Heavy metals processing industry has always been a major cause of concern which affects soils, surface waters, ground waters and river sediments contaminations. Thus, the Zanjan Zinc and Lead Smelting Plant has been considered as a potential source of contamination.

Materials and Methods: This cross-sectional study has been conducted in February 2008 in the site region. The concentrations of Lead, Zinc and Cadmium have been assessed. The samples have been taken from 17 wells and atomic absorption spectrophotometric method has been used to assess the samples. In order to find out and locate the exact situation of the wells under study, Global Positioning System instrument has been used. The correlation between the concentration of each metal and the distance of studied well from the plant has been assessed too.

Results: The findings of this study showed that lead and cadmium concentrations were 53% and 59% respectively out of the guideline values of World Health Organization.

Conclusion: The concentration of Zinc was lower than both national and international values in all samples. As the heavy metal concentration is very important for human health status, the other fields of study like heavy metal air pollution effects and related diseases and conditions should be studied and assessed.

Key words: Heavy metals, environmental pollution, drinking water, zinc and lead smelting.

*Corresponding Author: nourijafar@gmail.com
Tel: +98 21 20103110, Fax: +98 21 88950188