بررسی کارایی تصفیه خانه فاضلاب نیروگاه سیکل ترکیبی خوی
و بهینه سازی حذف فسفر در آن به روش بی هوازی - هوازی

محمد آقانازاد، علی‌اصفهانی خاکی، فرج واعظ

نویسندگان: هنری، دانشگاه علوم پزشکی تهران، دانشکده بهداشت، گروه بهداشت محيط

دریافت: 15/8/1392 پذیرش: 17/11/1392

چکیده
سنجش‌های موجودی امر آن را برای حذف فسفر موارد معززی از فاضلاب از روش‌های اصلی شناخته‌ی شده، ل Jeh فعالیت محیطی به روش‌های بی‌بی‌گی پیشنهادی حذف
فسفر استفاده می‌کنند که از منابع تریب آن‌ها روش بی‌هوازی - هوازی است. هدف از این تحقیق بررسی و رفع مشکلات موجود توسط خانه
فاضلاب بهداشتی نیروگاه خوی به‌همه‌ی سایی حذف فسفر در آن است.

روش بررسی: این تحقیق در مقیاس کلی‌ی صنعت فاضلاب به‌همه‌ی سایی حذف فسفر مورد بررسی قرار گرفت. این تحقیق خانه که با فرآیند موادی که در مرحله اول خانه کارایی کلی آن، مشکلات و عدم آن‌ها بررسی گردید. در مرحله دوم با انجام اصلاحات به‌همه‌ی سایی حذف فسفر مورد بررسی در مرحله اول خانه کلی شکل خانه بررسی گردید. در مرحله سوم سیستم موجود به فرآیند بی‌هوازی - هوازی تبدیل گردید و سیستم جدید با تغییر سیستم‌های جدید، هم‌زمان با بهبود سیستم موجود به فرآیند بی‌هوازی - هوازی تبدیل گردید و سیستم جدید با تغییر سیستم‌های موجود به فیکالگی، میزان غلظت غلظت میزان لجن دفعی و میزان لجن بی‌بی‌گی مورد آزمون کرده‌ی شد.

پایه‌ها: در مرحله اول می‌توان مشکلات، با بی‌بی‌گی و پرداختن به‌همه‌ی سایی به‌همه‌ی سایی TSS, BOD و فسفر از حدود مجاز تخلیه، رشد بیش از حد جلبک در فسفات داخل تصفیه خانه و آب‌های پذیره‌ی به‌همه‌ی سایی تی‌بی‌بی‌میلی می‌باشد. در مرحله دوم با اصلاح شرایط به‌همه‌ی سایی حذف فسفر از 50 به 24 درصد رسید. در مرحله دوم نیز در نهایت میزان حذف فسفر به 42 درصد رسید و مناسب‌گرایی ترین میزان فسفر در آب‌های تازه بی‌هوازی 13 المیلی‌گرم در لیتر می‌باشد. در تمام مراحل توانایی که پیش‌تر در میان سیستم‌های مورد استفاده وجود داشته است.

نتیجه‌گیری: از عوامل مهم به‌همه‌ی سایی میان دانشگاه، میزان ذرات بی‌بی‌گی و وضعیت بی‌بی‌گی، در تصفیه خانه‌های فاضلاب در منطقه که فسفات داخل تصفیه خانه از منابع تریب آن‌ها روش بی‌بی‌گی - هوازی است. هدف از این تحقیق بررسی و رفع مشکلات موجود توسط خانه فاضلاب بهداشتی نیروگاه خوی به‌همه‌ی سایی حذف فسفر در آن است.

1- دانشجوی کارشناسی ارشد مهندسی بهداشت محیط، دانشگاه علوم پزشکی تهران
2- دکترای مهندسی بهداشت محیط، استاد دانشگاه بهداشت علوم پزشکی تهران
3- دکترای مهندسی بهداشت محیط، دانشیار دانشگاه بهداشت علوم پزشکی تهران
به توجه به سواک تحقیقات مشخص شده است که معمولاً حذف استاندارد فسفر در تصفیه خانه فاضلاب در روش‌های معمول تصفیه آب پذیر نیست. لذا روش‌های پیشرفته حفظ پیوندی فسفر ابعاد و کاهش نمایه اندازه، Anoxic-Oxic (A/O) یکی از آن‌ها فرد است. این روش بر گذشتی به واحد بی‌هوایی و اخلاق با فاضلاب‌های اولیه است. (1) به توجه به اینکه این‌جا در فاز رشد افزایشی میکرو‌بهره برداری می‌شود ولی نباید به بی‌هوایی و اخلاق با فاضلاب‌های اولیه توجه نشود. به دلیل اینکه نیاز به فسفر در جریان اصلی فسفات‌ببیشتر حفظ شده و بی‌هوایی انجام گرفته. از سه زمان نمونه‌برداری 0.10 روز زمان ماند نمونه‌برداری 20 روز در زمان برخوردار حفظ فسفر به‌صورت Hg یا 49/7 بود که تاها با بی‌هوایی غلط در فسفر حفظ مانند بود. به این‌نکه در حفظ فسفر مناسب و فسفر‌در خوراک جرم سلولی است و فرازی‌زنی زمان نمونه‌برداری در حفظ فسفر با توجه به شرایط فاز خودکاری تاثیر مناسبی در حفظ فسفر داشت. (3) تحقیق دیگر در سال 2008 با موضوع تاثیر نسبت استین بروپیونیک به استین در حفظ نیتریژن و فسفر در سیستم بی‌هوایی-هوازی انجام شد. این تحقیق نشان داد نسبت استین بروپیونیک به استین در فاضلاب اولیه بر Poly hydroxy (PHB) Poly hydroxy valerat (PHV)-butyrate و نیتریژن در مخلوط بی‌هوایی موثر است. با دادن حفظ فسفر و نیتریژن می‌توان افزایش نسبت استین بروپیونیک به استین در سیستم فاز زیر 2 به 1 به‌طور 64 درصد با نسبت استین‌روپیونیک به استین‌سختی ایجاد و 82 درصد در نسبت 1 به 16 افزایش (3) تحقیق جداگانه در سال 2008 بر روی عوارض موثر بر جمعیت میکرو‌بهره برداری حفظ کندن انداختن انجام گرفت. نتایجی که به دست آمد حاکی از این بود که بهره برداری خوب مراحل نیتریژن زدایی با اکسی‌سپری برای رشد Poly hydroxy alkanoate فاز بی‌هوایی بر روی در داخل سلول ذخیره می‌شود ارزی PHA (بهره برداری موثر بر حفظ فسفر) را در مرحله هوازی تأمین می‌کند. (4) با انجام تحقیق در همین سال درجه مقابله باکتری‌های Polyhydroxy. بررسی کارایی تصفیه خانه فاضلاب...
بررسی کارایی تصفیه خانه فاضلاب تیروگاه خوی
قرار گرفت که توجه به آن که تا حال ازیبایی کلی از بهره برداری تصفیه خانه به عمل نیامده بود لذا این تحقیق در سه مرحله متوالی انجام گردید.

مرحله اول: بررسی کارایی تصفیه خانه در حالت معمول
به دلیل طراحی نامناسب و عدم راهبردی تصفیه خانه دارای مشکل توان شناور شدن لخته های جنگی یا تولید لجن دری پاک کنده بیش از حد استاندارد بوده گالب آلاینده‌ها مخصوصا فسفر و رشد بیش از حد جلبک بود که امکان باعث اختلال در معیارهای زیست محیطی تیروگاه نیز شده بود. علل اصلی بالا بودن فسفر خروجی نسبت پایین فاضلاب خام، زمان مانده سلسال بالا برکشتن لجن بیشتر و بی‌هوایی شدن لجن تعیین گردید.

مرحله دوم: اصلاح شرایط بهره برداری، تعیین کارایی واقعی تصفیه خانه
در این مرحله مشکلات بهره برداری با کنترل دقیق عوامل بهره برداری جوان تنظیم لجن دفعی و برکشتی و تسویت جدا با هم میکرواگانیسم و زمان ماند سلسالی کاهش زمان تغییرات لجن و کاهش عمق پوشش لجن در زلال ساز و تغییر خوب لجن آن تنها حدید زایدی پهنگردی و بعد از پارامترهای بهره برداری در دامنه روش تنظیم گردید. در این مرحله بیانان یک ساختار فاضلاب در محور دنیای ورودی تغییرات خانه و ته نشینی قسمتی از مواد معلول و تخمر لجن اولیه ناشی از

مشخصات فاضلاب اولیه و حوض هواده‌ی (غلظت ها به میلی گرم در لیتر هستند):

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>فسفر کل</td>
<td>22</td>
</tr>
<tr>
<td>ازت کل</td>
<td>33</td>
</tr>
<tr>
<td>COD</td>
<td>600</td>
</tr>
<tr>
<td>BOD</td>
<td>240</td>
</tr>
<tr>
<td>TSS</td>
<td>498 mg/L</td>
</tr>
<tr>
<td>Q</td>
<td>21.2 m³/d</td>
</tr>
<tr>
<td>بار آلی</td>
<td>0.24 kgBOD/m².d</td>
</tr>
<tr>
<td>F/M</td>
<td>0.37</td>
</tr>
<tr>
<td>MLSS</td>
<td>7500</td>
</tr>
<tr>
<td>HRT</td>
<td>36 h</td>
</tr>
<tr>
<td>V</td>
<td>35 m³</td>
</tr>
</tbody>
</table>

نمونه برداری از قسمت‌های مختلف تصفیه خانه اعم از واحد بی‌هوایی و رونده، پساب خروجی و لجن برکشته در دوره زمانی 8 ماه بین دی و آبان 1387 و به صورت هر دو روزیک بر اساس 44 ساعت انجام گرفته است. نمونه‌های جمع آوری شده مطبق روشهای استاندارد متدرج در کتاب مرجع استاندارد می‌باشد. 2005 از نظر متفاوت‌های مهم و موثر در کارایی تصفیه خانه و حذف فسفر مانند مواد معلول، ازت، قلبانیت، فسفر کل و محلول، تریترین، ته محدودست با کلیفتارهای قابل توجه مورد آزمایش COD, VFA, BOD, pH.
جدول 1: مقایسه کارایی تصفیه خانه فاضلاب تریگوار خوی در شرایط مختلف بهره‌برداری

<table>
<thead>
<tr>
<th>پارامتر-صردحش</th>
<th>TSS</th>
<th>TN</th>
<th>SP-Po$_{4}$</th>
<th>TP-Po$_{4}$</th>
<th>SBOD</th>
<th>BOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>بهره‌برداری 1</td>
<td>90</td>
<td>60</td>
<td>27</td>
<td>50</td>
<td>-</td>
<td>82</td>
</tr>
<tr>
<td>بهره‌برداری 2</td>
<td>96</td>
<td>65</td>
<td>62</td>
<td>92</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>بهره‌برداری 3</td>
<td>95</td>
<td>75</td>
<td>68</td>
<td>94</td>
<td>90</td>
<td>89</td>
</tr>
<tr>
<td>بهره‌برداری 4</td>
<td>95</td>
<td>75</td>
<td>73</td>
<td>94</td>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>بهره‌برداری 5</td>
<td>95</td>
<td>77</td>
<td>77</td>
<td>95</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>بهره‌برداری 6</td>
<td>96</td>
<td>81</td>
<td>78</td>
<td>95</td>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>بهره‌برداری 7</td>
<td>95</td>
<td>85</td>
<td>82</td>
<td>96</td>
<td>92</td>
<td>92</td>
</tr>
</tbody>
</table>

بهره‌برداری 1: بهره‌برداری تریگوار خوی در شرایط مختلف بهره‌برداری

ان به ویژه مانند جامدات به روز در این مهندسی، فشار تولید Volatile fatty acids (VFA) تولید آن به ویژه در فرآیند بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA مانند 40 % در محلول و VFA مانند 40 % در محلول. در این مهندسی زمان حفظ بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌برداری بهره‌برداری وابسته به آلودگی و غلظت محلول در فشار. مولکول‌های تولید VFA در شرایط مختلف بهره‌بردا
در مرحله سوم با توجه به شکل ۲ در قسمت ۲ به هوازی به ازای هر مول فسفر آزاد شده ۲ مول آسید چرب فرار بر حسب استدلال مصرف شده که در مقایسه با مراجعه استاندارد که آن را ۱۷۰۰ مول استاندارد مصرفی به ازای هر مول فسفر آزاد شده با که ۳/۳۲ نشان می‌دهد که بیشترین کاهش و راهیان فسفر در واحد هوازی در ساعت اول روی داده است. با توجه به شکل ۳ نسبت اسید چرب فسفر شده به فسفر حذف شده نیز در این طرح به طور متوسط ۷/۶ میلی گرم به ازای هر میلی گرم فسفر به حسب خود فسفر به دست آمد که با تحقیق Wentzel ۱/۹–۲/۰ در مراجعه با قرار مستقیم در لیتر نیز که عنوان ضریب دفع فسفر بین شده (۱). در این طرح همان طرح که در شکل ۱ نسبت ۱/۲–۲/۵ نشان داده شده است بین تولید و مصرف فسفر در میان میانه، تولید در واحدهای خروجی، زمان تماس یا هوازی و که اشکال زمان مانند سیالی و غلظت فسفر کل در پساب خروجی، روابط خصوصی معنی‌داری وجود دارد و ضریب همبستگی (R²) برای VFA، TSS.BOD در VFA و AV/۰ به دست آمد است.

![شکل ۲: روند تغییرات در تبیین هوازی طرح TP-VFA-BOD سطح ۲ راه‌اندازی‌های طرح](image1)

در این طرح به ۱/۲ و سیستم که در شکل ۲ قابل مشاهده است و درصد فسفر در وزن خشک توجه می‌کشی با توجه به انجام آزمایش فسفر و مخلوط روی لجن برگشت شده در انتهای طرح به ۱/۲/۵ رسیده که بنا بر آن کارایی خوب روش جدید در حذف فسفر به است. اختلاف بین ارقام با دست آمد و ارقام تحقیقات قبلی ناشی از این است که بافت های قبلی از پایلوت آزمایشگاهی به دست آمد اند و در میزان واقعی این ارقام
بحث ونتیجه گیری
در مرحله اول طرح مشخص گردید سیستم‌های دویی کستره به دلیل داشتن نه تشییع اولیه و بهره برداری در زمان ماند سولوی بالا و دفع لحظ کمتر نسبتاً در حذف معمول فسفر موفق نبود اما مشخص می‌شد که تهیه‌ها و بهره برداری کارایی آن را در حذف فسفر بهبود بخشید. در لایه بالا بودن غلظت فسفر خروجی و به تبع آن رشد نیش از حد جلبی در قسمت‌های مختلف از ناحیه خانه و ورود به ناحیه کننده با پایین دادن COD/BOD با فاصله و COD/BOD/P نسبت بالا و پایین هوازی شدن لحاظ در دو زوال ساز و غلظت کندنی که منجر به افزایش فسفر و برش‌کردن آن به روش تصفیه خانه کرده، دلیل بود. نتایج حاصل از راه‌حل دویوم‌های طرح مشخص می‌شد میزان مصرف اسمبل چرب فرآیند در واحد بی‌پایی بود. غلظت بخاری های پای‌فشار، میزان مصرف فسفر خروجی آن و غلظت از طریق علی‌رغم‌که از گراف‌های بی‌پایی میزان کارایی حذف فسفر تاثیر داشته‌اند که در تحقیقات بین‌میان باشند همچنین نقطه مطلوب برای نسبت غذا به میکروگانیسم برای حذف بهتر فسفر در آن انجام برای ۱/۲ بود. کمترین میزان حذف فسفر نیز در برای ۰/۷ روز داده است که متعلق به سیستم بی‌پایی معمول خانه‌ها با پایین داده شده است. همچنین بهترین میزان برای نسبت لجنس برش‌کردن از لحاظ حذف بهتر فسفر ۱/۲ بوده است که در آخرين ماه‌ طرح روى داده است.

شکل ۱: رابطه بین غلظت فسفر خروجی و نسبت بیرگشت بین میکروگانیسم A/O

شکل ۵: رابطه بین غلظت فسفر کل و فسفر خروجی در طول دوره طرح A/O

شکل ۶: R² = ۰/۹۹۸

شکل ۷: نسبت بیرگشت لجنس به صورت A/O

Determining the Efficiency of WWTP in Khoy Power Plant and Improving Phosphorus Removal by Anoxic-Oxic Process

*Aganeghad M., Mesdaginia A.R., Vaezi F.
Department of Environmental Health Engineering, Faculty of Tehran University Medical Science

Received 3 February 2009; Accepted 7 January 2009

ABSTRACT

Backgrounds and Objectives: Now a days modified activated sludge ways are used for standard removing nutrient substances from waste water that is named Enhanced biological phosphorus removal One of the most suitable ways is Anoxic-Oxic(A/O) process. The goal of this research is investigation and solving existing problems of Khoy power plant(P.P) waste water treatment plant(WWTP)and optimizing of phosphorus removal in it.

Materials and Methods: This research is done full scale in this treatment plant. The treatment plant was operating with extended aeration process, and some problems had, so in the first stage with in investigation of total efficiency, problems and their reasons determined. In the second stage after operational modifications existing problems was solved and real efficiency of treatment plant particularly for phosphorus(P) removal determined. In the third stage changes, system converted to A/O process and new system was tested with Changing parameters like food/microorganism(F/M), return sludge ratio(RAS)and sludge retention time(SRT)

Results: In the first stage the most important problems were over concentration of BOD,TSS, and P in effluent of treatment plant and overgrows of alga observed in parts of treatment plant and effluent receiving conduit. The main reason of high concentration of P was considered releasing of sludge. In the second stage operating condition modification efficiency of P removal increased from 50to 62 percent. In the end of third stage value of P removal reached to %82 and the most suitable of anoxic contact time was determined 3to4 hours, SRT terry day and F/M ratio o.12,that the most effective change has been the decrease of SRT to three days.

Conclusion: Adjusting of operating factors like SRT,RAS, sludge processing way in WWTP can increase P removal in them with in total efficiency remaining, such as in this case it was %12. In waste water treatment particularly for P removal the A/O process is suitable so in this project its effect on P removal efficiency has been %20.

Keywords: Wastewater treatment, Biological phosphorus removal, Anoxic/Oxic process, Khoy power plant

*Corresponding Author: m.aganejad@gmail.com
Tel: +98 914163953 Fax: +98 461 2357422