جذب رنگ میلین بلو از فاضلاب سنتیک با استفاده از خاکستر استخوان

فاده چیزی از مردان، جوان عضوی!

asgari2003@yahoo.com

نویسنده مسئول: همدان، دانشگاه علوم پزشکی همدان، دانشکده بهداشت، گروه بهداشت محیط

دوره دوم، شماره دوم، تابستان 1388، صفحات 113-118

چکیده

زمینه و هدف: رنگ‌ها، موارد آلی با ماده خاکستر، بالغ ترین سرطان زنی، جهش را، خاکستریه، این مطالعه با هدف گرفتن اثراتی اکنون مجدداً استفاده از خاکستر استخوان به عنوان یک جاذب در جذب رنگ میلین بلو، یکی از مهم ترین آلیه‌های فاضلاب است. این مطالعه از سوی اکنون، از گونه‌ای مهم نسبت به تحقیق‌های جاذب در جذب رنگ میلین بلو جذب، تاثیر علت اولیه رنگ، زمان نماس و pH در جذب میلین بلو با خاکستر استخوان بود.

روش بررسی: در این مطالعه خاکستر استخوان در شرایط آزمایشگاهی با استفاده از کودهای الکتریکی در دمای 3700 و زمان 2 ساعت به شدت خرد. کروک و دانه یک یا چند خاکسترهای استخوان با استفاده از آسیب بردن آب و اکسیژن استفاده می‌شود. استفاده از این قدرت، جهت تعیین مشخصات خاکستر استخوان از تکنیک خاکستر استخوان از تکنیکی به پراکس پرتوئکس (XRD) و ساختار بیولوژیکی روشی است. این مطالعه به عنوان یک جاذب در جذب میلین بلو با استفاده از لیزر سرشار از دستگاه برای بررسی pH جاذب در جذب میلین بلو، یکی از مهم ترین آلیه‌های فاضلاب است. جذب رنگ در ترمهای مختلف با استفاده از استرژومتر در طول زمان محسوب 3-6 ساعت از دستگاه کروک کرد.

پایه ها: ساختن خاکستر استخوان به شدت در این مطالعه اغلب از هیدروفوکسی آپاتیت کلسیم شکل دهنده یا میزان سطح ویره آن 10 m/g عایقی است. استفاده می‌تواند جذب/حذف رنگ میلین بلو با افزایش pH غلاف‌ولیه رنگ، در جاذب/خاکستر استخوان (pH) افزایش می‌یابد. جذب رنگ میلین بلو بعد از مدت 2 ساعت با تعادل رسیده و pH بهینه در جذب میلین بلو با خاکستر استخوان بین pH 4/8 تا 12 است. داده های pH میانگین هزینه جدید به‌روند به تغییر می‌کند. تغییر pH خاکستر استخوان به عنوان یک جاذب ارزان و با اکنون آماده‌سازی در شرایط مختلف می‌تواند به عنوان یک جاذب در تولید آزمایشگاهی استفاده شود. با توجه به این که pH بهینه جذب رنگ، به عنوان یک جاذب در محدوده pH 4/5-12 استفاده، این جاذب با استفاده از جذب رنگ از فاضلاب‌های اکنون مورد استفاده قرار گیرد.

واژگان کلیدی: خاکستر استخوان، میلین بلو، جذب، رنگ، فاضلاب

1- دکتری بهداشت محیط، استادیارگرده مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی بیهق (عج)
2- فوق لیسانس بهداشت محیط، عضو هیئت علمی گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی همدان
مقدمه
میزان تولید چربن در جهان در حدود ده‌ها میلیون تن تخمین زده می‌شود که در صنایع مختلف نظیر تولید مواد آرایشی، چسب، رنگ‌سازی، صنایع کارخانجات، صنایع ادویه و صنایع آب‌پزشی و غیره تولید چربن مصرف می‌شود. این چربن‌ها در دسته‌بندی‌های مختلفی قرار گرفته و به تعدادی از پارامترهایی مانند طعم، رنگ، شکل، ضرایب همگرایی، حجم بسته و غیره توجه شده است. در این مطالعه تأکید گردیده که دلیل مسیر چربن‌ها را در پیچیده اغلب پیامدهایی نظیر تغییر تصویر، رنگ، شکل و استحکام و تغییر قطر خود و نیز تغییر خصوصیات الکترونی و الکتروفیزیولوژیکی این مواد می‌باشد. چربن‌ها با توجه به ظروف مختلف محیطی و احتمالاً بر اثر تغییرات محیطی در محیط زیست و سلامت انسان محسوب می‌شود. از این رو موارد مختلفی از آب‌های تبدیل‌سازن و تداخل در اکولوژی آب‌های کنار مصرف و از طریق فعال‌سازی چربن، محدودیت زیستی می‌شود که به‌طور کلی برای محیط زیست و سلامت انسان محسوب می‌شود.

خلاصه مطالعه
در این مقاله از نظریه ساختاری استخوان چربن‌ها در آب‌های پیش‌بینی‌شده بنده در بروز پدیده اتشفیکسیون و تداخل در اکولوژی آب‌های پیش‌بینی‌شده می‌شود. به همین دلیل حتی اگر تمام آلایندگی‌های فعال‌سازی صنایع (ننگ‌سازی) حذف شود، رنگ‌بافی ماده‌ای از نظر زیست محیطی بسیار مهم است که به نوع و گلظت رنگ یکسان باشد. از نظر پیش‌بینی‌شده رنگ‌های دارای خصایص مثبت بی‌کارگاهی از جمله سرطان‌زا و جهش‌زا بوده و می‌تواند علاوه بر آنزیم‌ها و مکمل‌های پزشکی بی‌کارگاهی از جمله سرطان‌زا و جهش‌زا بوده و می‌تواند علاوه بر آنزیم‌ها و مکمل‌های پزشکی

حقه رنگ میانی بلو از فعال‌سازی …
مواد و روش‌ها

این مطالعه به صورت نمونه‌برداری و با استفاده از رنگ کاتیویتی متیلن بلو با وزن مولکولی 37/3 کرم بر مول و
فومول (C₅H₁₀N₂O₄) محصول شرکت مرکز آلمان استفاده شد. جهت انجام مطالعه ابتدا یک مورد نظر به
مدت 2 ساعت در دمای 110 درجه سانتی‌گراد در فورن (آنون) قرار داده شد. شیشه محلول ذخیره 1000 میلی گرم در لیتر رنگ بی‌رنگ
بلو (100×10 میلی‌پیکره) به کمک گردنبندی سنجش فلزی به طور متوسط در نمونه‌های استاندارد و مجهول با استفاده از اسپکتروفیورمتر
پروس مصنوعی Philips مدل UV/Visible کالیبراسیون در طول موج 660 نانومتر انجام شد (10).

خاکستر استخوان در شرایط آزمایشگاهی با استفاده از کوره الکتریکی در دمای 3700 و زمان 2 ساعت به کمک
جهت خرد کردن خاکستر استخوان از آسیب برگی
پراکنش 30-50 ثانیه استفاده شد. دانه بندی خاکستر ها با
استفاده از کل های استاندارد ASTM با اندازه‌های 16 و
سطح مقطع 10 Mس (2-1) میلی‌متر انجام گرفت (17). جهت تعیین
مشخصات ساختاری خاکستر استخوان از تکنیک های پراکنش
برتاونیکس (X-Ray Diffraction), Belsorp (Scanning Electron Microscope) و
فیلیپس و تعیین سطح ریزه آن از ایزوتروم
Belsorp و نسبت پوسته نرم افزایر (BET(Brouner-
Teller)Emmet- رایین استفاده شد. علت انتخاب خاکستر استخوان به عنوان
جاذب ارزان بودن، عدم نیاز به فنال فعال سازی و مقاومت
فیزیکی بالا و تثبیت نسبت به کرین عوامل است. در این مطالعه نتایج
یافته‌ها متنوعی از قبیل تاثیر زمان تعامل، غلظت اولیه،
pH و در جاذب، در فرآیند جذب مورد بررسی قرار گرفت.
pH و بعد از تعیین زمان تعامل مناسب، در جذب و
میزان pH مشخص به ترتیب با ایزوتروم جذب آلاینده مورد تأثیر بر روی
پراکنش استخوان تعریف گردید. تعیین ایزوتروم جذب با استفاده
از معادلات عمومی ایزوتروم فروندانی و لانگزیر بررسی شد.

نتایج
مشخصات ساختاری خاکستر استخوان در شکل‌های
(1) و (2) نشان داده است. شکل (1) نشان دهنده عکس
MIKROSWOKپ ساختاری خاکستر استخوان است که با برگ
5000 تعیین شده است. این شکل نشان می‌دهد که
خاکستر استخوان مورد استفاده دارای ساختار غیر مبهم
بوده و دارای خلل و فریج و سطح مرتفع باعث جذب است.
میزان سطح قابل دسترس بر اساس محاسبات انجام شده با
میزان میل 3/1. پوسته توسط Belsorp مقدار
m/mg تعیین شد. شکل (2) نشان می‌دهد قسمت عمدی ساختار خاکستر استخوان از هیدروکسی
Ca₃(PO₄)₂OH آینه کلسیم با فرمول شیمیایی
است که این ساختار بر نیک ازنی و مقاوم به پیک موجود
در منحنی با استفاده از کاروس های استاندارد تعیین گردید. این
ساختار مولکولی خاکستر استخوان نشان می‌دهد که این جاذب
جزو جاذب‌های معادنی می‌تواند طبق بازیتی در حذف
آلاینده های زیست محیطی مورد استفاده قرار گیرد. طرفین با
توجه به وجود هیدروکسیل در استخوان این
جاذب به وجود هیدروکسیل موجود در ساختار این
جاذب این
فرضیه مطرح شد که
در میزان جاذب آلاینده ها توسط این جاذب داشته باشد و
گروه هیدروکسیل موجود در ساختار این جاذب می تواند به
عنوان یک گروه عامل مطح لفتش کننده که این فرضیه
در مراحل بعدی مطالعه نیز پذیرش شد. این نتایج نشان می دهد
pH که
فرضیه پیشنهاد گردید
در حذف/جذب آلاینده ها توسط این
جاذب می تواند داشته باشد.

شکل 1: عکس الکترونی خاکستر استخوان با ولتاژ 5000 و
پرگنامی 20 و
بررسی تأثیر زمان نماس در میزان جذب/حذف رنگ تیتانیوم بلو در خاکستر استخوان نشان داد که هرچند با افزایش زمان نماس میزان جذب افراشی می‌باشد اما جذب رنگ مورد نظر بر روی خاکستر استخوان بعد از مدت ۲ ساعت به تعادل رسیده و بعد از این میزان جذب/حذف رنگ توسط جذب تقریباً ثابت مانده. همانطور که در شکل ۲ نشان داده شده است با افزایش زمان نماس میزان جذب رنگ در جاذب از ۹/۴۵ میلی گرم بر گرم به ۱۰/۵ میلی گرم بر گرم افراشی پایه و بعد از مدت ۲ ساعت تعادل برقرار می‌گردد.

بر این اساس جهت بررسی تأثیر سایر بارامترهای مواد نظیر در مطالعه از زمان نماس ۲ ساعت استفاده گردید. این تأثیر نشان می‌دهد که جذب رنگ تیتانیوم بلو بر روی خاکستر استخوان یک فرآیند نسبتی کناری است که احتمالاً به ماهیت ساختاری خاکستر استخوان و نوع رنگ استفاده شده بستگی دارد که در مکانیسم جذب آن‌ها هی بسیار موثور است.

با توجه به شکل ۲ می‌توان گفت که افراشی غلظت اولیه رنگ منجر به افزایش میزان جذب/حذف رنگ می‌گردد. نتایج این مطالعه نشان داد که با افزایش غلظت اولیه رنگ از ۵۰ mg/L به ۲۰۰ mg/L غلظت اولیه و ضریب تدریج افراشی به ۱۱۰ به تدریج افراشی پایه و در حد فاصل این میزان سا/غلظت اولیه میزان جذب/حذف تقریباً ثابت مانده است. بنابراین بر اساس شکل ۲ می‌توان نتیجه گیری کرد که بیشترین میزان حذف رنگ توسط خاکستر استخوان در غلظت ۲۰۰ میلی گرم در لیتر حاصل می‌شود.

![شکل ۲: منحنی XRD خاکستر استخوان](https://example.com/image2)

شکل ۲: نمودار زمان نماس در جذب رنگ با غلظت ثابت ۲۰۰ میلی گرم در لیتر (ز دامنه ۵-۱۲)

با توجه به شکل ۲ و تایید حضور گروه های عامل هیدروکسیل در ساختار خاکستر استخوان و مطالعات انجام شده می‌باشد که تأثیر pH در پایان حاصله در جذب و حذف در نتیجه میزان جذب/حذف رنگ در روند سطوح مختلف عوامل جذب کننده در این مرحله تأثیر می‌گیرد در دامنه ۵-۱۲ و روی میزان جذب رنگ مورد مطالعه pH

![شکل ۳: نتایج غلظت اولیه رنگ در قرار فاصله با زمان نماس ۱۲۰ دقیقه (ز دامنه ۱ گرم)](https://example.com/image3)

شکل ۳: نتایج غلظت اولیه رنگ در قرار فاصله با زمان نماس ۱۲۰ دقیقه (ز دامنه ۱ گرم)
بر روی حاکم‌سازی استخوان‌بررسی شد (شکل 5). نتایج این بخش از مطالعه نشان داد که با افزایش pH و تضاد شکن به pH زکف حاکم‌سازی استخوان (این میزان در حد 6/81 است) که داده‌های آن نشان‌داده‌که با pFpH افزایش به بالاتر از 9 mg/g میزان جذب رنگ میلیلیوم افزایش یافته است. همانطور که در شکل 5 مشاهده می‌شود در pH میزان جذب رنگ میلیلیوم بالاتر از 9 mg/g میزان جذب رنگ به pH افزایش یافته است. که این نشان دهنده تاثیر فرضیه تأثیر حضور گروه عامل میلیلیوم و ارتباط آن با pH محیط و اکتشاف است که بعد از تعیین ساختار حاکم‌سازی استخوان در این مطالعه مطرح شد.

بررسی نتایج میزان جذب استفاده شده در جذب آلانیدین نشان داد که با افزایش pH جذب از 6/3 کرم به 10 کرم میزان رنگ با فاصله مانده در محلول از 28/2 میلی‌گرم در لیتر به 2 میلی‌گرم در لیتر کاهش یافته (شکل 6). بر اساس شکل 6 نتایج مطالعه نشان می‌دهد که هرچند با افزایش میزان جذب استفاده شده راندمان جذب افزایش یافته و رنگ با فاصله مانده در محیط مقاوم کمتری را نشان می‌دهد اما با توجه به شکل 7 و محاسبات انجام شده نتایج مطالعه نشان داد که با افزایش میزان جذب از 10 mg/g بررسی ضرایب همبستگی در 1 کادر آلاینده جذب شده.
بحث و نتیجه‌گیری

تعیین ترکیبات موجود در ساختار یک جاذب یکی از مهمترین نکات مورد توجه در فرآیند جذب است که باید مواد ترکیب قرار گیرد. در این مطالعه نتایج بررسی اجزای موجود در ساختار جاذب استخوان نشان داد که ترکیب غالب در ساختار یک جاذب هیدروکسی آپاتیت کلسیم با Ca₃(PO₄)₂OH فرمول Ca₅(PO₄)₂OH است که حدود 70 درصد ساختار جاذب مورد استفاده را تشکیل می‌دهد. مقایسه نتایج Choy این مطالعه با یافته‌های محققین مطابقت می‌دارد.

برای بررسی تأثیر غلظت رنگ در جذب، غلظت رنگ از 0 تا 25 تا 200 میلی گرم در لیتر تغییر داده شد. در این مراحل از آزمایش زمان نماس و در جاذب ثابت بود. همان طور که در شکل 8 نشان داده است مقادیر طرفین جذب با افزایش غلظت اولیه رنگ افزایش یافته و حداکثر جذب (94%) در غلظت 200 میلی گرم در لیتر حاصل شده است.

شکل 8 افزایش غلظت اولیه رنگ با افزایش حداکثر جذب

شکل 9 افزایش قرار گرفت در مقدار جذب با افزایش حداکثر استخوان
تعداد بارداری معنی‌داری pH قبوری‌ها و همکاران

قبران عسکری و همکاران

نیزول‌های داده‌شده با افزایش زمان افزایش یافته و با

افزایش زمان تا ۱۲ دقیقه به حداکثر مقدار خود رسیده است

(شکل ۲). بعد از این مدت مقدار جذب ثابت ماند. بنابراین

زمان نمای ۱۲ دقیقه به عنوان زمان رسیدن به حالت تعادل

انتخاب شد. بنابراین با افزایش زمان خروجی از محیط‌های تفاوتی در سال ۲۰۰۷ غزارش در

ارد در بر روند سبب بررسی و غزارش کرده که چگونگی

بین افزایش می‌باشد. این محیط‌های تفاوتی pH در

گزارش کرده اند که در جذب رنگ‌های رنگین پری که می‌باشد

گروه‌سیلیکس باعین تاثیر احتمالی غزارش و ایجاد یک

از جذب مناسب رنگ می‌گردد. این پدیده در مورد جاذب

مورد استفاده از این محیط‌های تفاوتی که با پاشند (۱۱). تاثیبی pH

مصرفی توسط Sulaik مشابهتی با افزایش

شد است. این محیط‌های تفاوتی گرندکه این تفاوت در

mg/g ۱/۳ میزان جذب رنگ از ۱۳/۹ mg/g بوده است. همکاران در

جلب آلانده بر سطح جاذب جاذب را با pH Hameed و بر اساس

بار الکتریکی

در Hameed و همکاران در سال ۲۰۰۷ جاذب رنگ pH7 ۱۵/۲۸

را تایپ باعین داده اند (۲۲). Sulaik افزایش pH و بر اساس تایپ

در pH لاگر مشابهتی با یکی از آن محیط‌های تفاوتی pH

Hameed و به تغییر محیط‌های جاذب کاهش می‌یابد. هرچند بابت های

این محیط‌های تفاوتی نظر ظاهری با یکدیگر دلیل

با A و اساس تایپ pH در روشن جذب رنگ کاملا

مقدار زمان اندازه گیری گرندکه که با تایپ به تاثیر

بر اساس تایپ آلانده و جاذب استفاده شده در حذف pH

آلانده ها، تایپ pH را صورت می‌گیرد. به طور اختصاصی مورد تا سطحی

پیامدها ۱۳/۷۳۸۱ از pH ها. تایپ pH یافته است. به طوری که در دامنه ۸/۱–۱۰/۸

بیشتر از pH تایپ pH از pH ها. تایپ pH یافته است. به طوری که در دامنه ۸/۱–۱۰/۸

ارتباط دارد. بررسی ها نشان می‌دهد در pH از pH ها

بار الکتریکی سطح غبار در سطح جاذب ها به صورت بار

منفی است بر اساس و با توجه به این بار سطحی

فاکتورها معنی‌دار است از طریق تایپ بر سطحی pH

رنگ و با سطحی جاذب در فراوان جذب تایپ می‌گذارد.

طبق تایپ اولیه با افزایش pH میزان جذب رنگ افزایش

یافته است به طوری که در دامنه ۸/۱–۱۰/۸ بالاتر از pH بیشتر از pH ها. تایپ pH یافته است. به طوری که در دامنه ۸/۱–۱۰/۸

بیشتر از pH ها. تایپ pH یافته است. به طوری که در دامنه ۸/۱–۱۰/۸

ارتباط دارد. بررسی ها نشان می‌دهد در pH از pH ها

بار الکتریکی سطح غبار در سطح جاذب ها به صورت بار

منفی است بر اساس و با توجه به این بار سطحی

فاکتورها معنی‌دار است از طریق تایپ بر سطحی pH

رنگ و با سطحی جاذب در فراوان جذب تایپ می‌گذارد.
حذف رنگ میلیون بلو از فاضلاب

هرچند مدل های جذب لانگکیر و فروندلیج دارای فضایت و تریا فیلتر هستند اما مطالعات انجام شده بروی جذب رنگ های BBr و RO16 بروی سیس برای جذب آنها سخت است. این گاه نشان می دهد که جذب این رنگ ها بر روی این جاذب با چند کیلوگرم رنگ کیفیت بالا و فعال در سطح جاذب بودن نسبت به کریستال فعال، عدم نیاز به مرحله فعال سازی، مقاومت فیزیکی بالاتر نسبت به کرین فعال و دسترسی آسان به مواد اولیه مورد نیاز و توانایی حفظ انواع مختلف آلنده ها به میزان کاربردی زیادی داشته باشد. نتایج مطالعه نشان داد که حذف میلیون بلو از افراشی غلظت اولیه افراشی می باشد و بعد از 120 دقیقه نمای شده است. در حذف میلیون بلو به وسیله خاکستر pH استحکام از ابزار ترم جذب فروندلیج تیغیت می کند و به حال تداد می رسد. جذب میلیون بلو به وسیله خاکستر به حالت جذب می‌افزاید. این استحکام از ابزار ترم جذب فروندلیج تیغیت می کند و به حالت جذب می‌افزاید.

5. Amina A., Badie S. Removal of methylene blue
by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dyes Pigm. 2008; 76: 282-289.
Removal of Methylene Blue Dye from Synthetic Wastewater with Bone Char

Ghanizadeh Gh. 1, *Asgari G. 2

1 Department of Environmental Health, Health School, Baqiyatallah (a.s) University of Medical Sciences, Tehran, Iran
2 Department of Environmental Health, Faculty of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

Received 3 February 2009; Accepted 27 May 2009

ABSTRACT

Backgrounds and Objectives: Dyes are organic materials with complex structures, toxic, carcinogenic, teratogenic, nonbiodegradable properties and the most important pollutants of textile industrial wastewaters. The goal of this study was to survey the feasibility application of bone char (BC) as a sorbent for the removal of methylene blue (MB) from synthetic wastewater. The sub goals of the research were to determine the adsorption isotherm, effects of primary concentration of dye, adsorbent dose, contact time, and pH for the adsorption of MB with BC.

Materials and Methods: BC was prepared under laboratory conditions by using of electrical furnace at 400°C for 2h. The prepared BC was crushed and pulverized by standard ASTM sieves with range of 10-16 mesh (1.18-2 mm). The chemical composition and solid structure of BC was analyzed using X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Measurement of the surface area was carried out by N2 gas via BET isotherm and Belsorb software. The concentration of dye was measured by photometric method (663nm).

Results: Predominant composition of BC is calcium hydroxyl apatite (Ca5(PO4)3OH with 14m2/g surface area. The results of this study showed that increasing of primary concentration of dye, adsorbent dose and pH (5 to 12) would lead to increasing of adsorption/removal of MB dye. Equilibration of dye adsorption was reached at lapse of 2h and optimum pH for adsorption of MB with BC found in the rage of 8.5-12. Adsorption of MB with BC complies with freundlich isotherm (R²: 0.99).

Conclusion: Bone char is a cheap component that can be used as an adsorbent in water and wastewater treatment. Based on optimum pH of 8.5-12 found for the removal of MB and the fact that many of textile industrial wastewaters have an alkaline pH, this adsorbent can be used for the removal of dyes from these wastewaters.

Keywords: Bone char, Methylene blue, adsorption, dye, wastewater