بررسی کیفی و مقایسه کمپوست تولیدی در کارخانه‌های کمپوست خاکین و تهران

مهدی فرزادگیان، سید صالحی، احمد عماری، احمد جنگی، رامین نیک زاده
نویسه‌دهنده: تهران، دانشگاه علوم پزشکی ایران، دانشکده بهداشت، گروه مهدی‌سازی بهداشت محيط ايران
تیتر: بهداشت محیط 1388 صفحات 169

چکیده
زمینه و هدف: بخش از ۲۰ درصد از ترکیب زباله‌های شهری ایران را پسمانده ماده خاکی‌ای به دارد. استفاده‌هایی با معدنی تشکیل می‌دهد. در این سری از کشور به این موضوع توجه نهایی و تولید کودی ارزشمند از این مواد، از الیاف‌های اصلی مدیریت زباله‌های شهری در کارخانه‌ها کمپوست خاکین و تهران است.
روش بررسی: این مطالعه با مدت ۲۴ ماه بر روی کمپوست تولیدی در کارخانه‌های کمپوست خاکین و تهران انجام شد. به متروک تعود و خصوصیات شیمیایی کمپوست تولیدی در دو کارخانه کمپوست خاکین، بعد از سیستم تنصیخ و فلزات سطح سرب، کامپوست، نیتر و کروم مورد بررسی قرار گرفت. خصوصیات میکروبی کمپوست تولیدی نیز به تعبیر مقدار کل ردیم، سالمونولا و ادکلن مشخص گردید.

نتایج گیری: نتایج آنalyز نشان داد که درصد مواد اولیه در کمپوست تهران کمیت بهتری داشته‌است. اما هر دو نوع کمپوست با پایین‌تر داشته‌اند. درجه سطح تئوری، کروم، نیتر و پاسکال در نمونه‌های در دوره‌های مختلف کروم و نیتر بالاترین، کروم و نیتر بالاترین مطلوب بود. میزان فلزات سطحی کروم و نیتر بالاترین در کمپوست تیدی داشته‌اند.

واژگان کلیدی: کمپوست، زباله‌های شهری، تهران، خاکین
کارخانه کمیسنت خمین

شهرستان خمین در جنوب استان مرکزی، در شرق رشته کوه‌های زاگرس دره‌های داخلی به خشکسالی و مناطق خشک کشور می‌باشد. تعداد نفر در خود را می‌شناسد از طریق این راه‌پیما آب را در خود را می‌شناسد. روش‌های مختلفی که با توجه به خصوصیات شهر به کار رفته‌اند. خمین در اردیبهشت ماه ۱۳۸۶ راه‌اندازی گردید. روش تولید کمیسنت در این کارخانه سیستم ویندرو است.

کیفیت تغذیه سربند ۶۰ میلی متر از ناحیه رای ام‌بی‌نی‌ای‌سی این کارخانه است. هر در خروجی دستگاه سربند مهم‌ترین به‌بین‌ردن در ناحیه‌های مختلف می‌باشد. تعداد نفر در خود را می‌شناسد. روش‌های مختلفی که با توجه به خصوصیات شهر به کار رفته‌اند. خمین در اردیبهشت ماه ۱۳۸۶ راه‌اندازی گردید. روش تولید کمیسنت در این کارخانه سیستم ویندرو است.

کارخانه کمیسانت تهران

کارخانه کمیسانت تهران در منطقه‌های شهر رشته کوه‌های زاگرس دره‌های داخلی به خشکسالی و مناطق خشک کشور می‌باشد. تعداد نفر در خود را می‌شناسد از طریق این راه‌پیما آب را در خود را می‌شناسد. روش‌های مختلفی که با توجه به خصوصیات شهر به کار رفته‌اند. خمین در اردیبهشت ماه ۱۳۸۶ راه‌اندازی گردید. روش تولید کمیسنت در این کارخانه است. خود را می‌شناسد. روش‌های مختلفی که با توجه به خصوصیات شهر به کار رفته‌اند. خمین در اردیبهشت ماه ۱۳۸۶ راه‌اندازی گردید. روش تولید کمیسنت در این کارخانه است.
پس از عبور از سرزنده، ۵ میلی متری به دو دسته روزنده و زیر سرزنده تقسیم می‌شوند. روزنده‌ها عمدتاً مواد قابل بازیافت و حجم تشکیل می‌دهند و مواد زیر سرزنده با قطر کمتر از ۵ میلی متر عمدتاً مواد آتی قابل کمپوست است. مواد قابل کمپوست وارد سالن‌های کمپوست‌ساز درودان انجام می‌شوند. بعد از ۴ هفته کمپوست (maturation) در وارد سالن‌های کمپوست‌ساز مراحل رسیدگی به سرزنده‌ها و ۲ سالانه میتری عملیات سرزنده انجام می‌گیرد. کود تولیدی توسط شهرداری به فروش می‌رسد. (۱)

مواد و روش‌ها

این مطالعه در طول ۹ ماه با مراجعه به کارخانه‌های کمپوست‌ساز خمین و نهاران انجام شد. نمونه برداری از Test Methods for the) TMECC (Examination of Composting and Compost کمپوست به روش (USEPA) که یک روش نمونه‌برداری مرکب است انجام گردید (۶۴). جهت نمونه برداری از هر توده در ۵ نقطه توده به شکل آیزید نمونه ۲ برش در یک طرف و ۲ برش در طرف دیگر و در هر برش ۲-۱۵ نمونه ۱ کیلوگرمی برداشته و آنها را کاملاً مخلوط و سپس حجم نمونه را به یک چهارم کاهش داده تا مقدار نمونه به حدود ۱۲ کیلوگرم برسد. از هر نمونه ۱۵ کیلوگرم مخلوط کرده دیگر. این نمونه‌ها درون کیسه پلاستیکی مفاوت با پوشش فولادی آلوآئمنیومی قرار داده و به آزمایشگاه‌های متعدد. شد.

تعداد ۹۶ نمونه کمپوست (۱ نمونه از کارخانه‌ها و ۵ نمونه از کارخانه‌های تهیه) به صورت ماهانه از توده‌های کمپوست رسیده تهیه و جهت آنالیز به آزمایشگاه ارسال شد. به منظور تعیین خصوصیات شیمیایی و ارزش کودی کمپوست

جدول ۱: روش آزمایشی پارامترهای کمپوست

| پارامتر | روش آزمایشی | نتایج آزمایش
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>درصد مواد آلی</td>
<td>نتیجه‌ی نشانی روش سردیا و کلیک بالا</td>
</tr>
<tr>
<td>متر</td>
<td>درصد کریز</td>
<td>نتیجه‌ی فلات سکین</td>
</tr>
<tr>
<td>سیستم‌های فلایه‌بندی</td>
<td>درصد اثرات</td>
<td>نتیجه‌ی فلات سکین</td>
</tr>
<tr>
<td>جداب اتیک</td>
<td>فلایه‌بندی (شیره)</td>
<td>نتیجه‌ی فلات سکین</td>
</tr>
<tr>
<td>کمپوست</td>
<td>شیمیایی کلیکی</td>
<td>نتیجه‌ی فلات سکین</td>
</tr>
<tr>
<td>تغییر</td>
<td>نمره آخر</td>
<td>نتیجه‌ی فلات سکین</td>
</tr>
</tbody>
</table>

یافته‌ها

نتایج آزمایش‌های شیمیایی کمپوست تولیدی در کارخانه‌های خمین و نهاران در جدول ۲ و نتایج آزمایش‌های مکرر

کمپوست این کارخانه‌ها را در جدول ۳ و ۴ درج شده است.
جدول ۲: نتایج آنالیز شیمیایی کمپوست کارخانه خمین

<table>
<thead>
<tr>
<th>مواد آلی</th>
<th>pH</th>
<th>شماره تهیه</th>
<th>کربن ازت (درصد)</th>
<th>سرب (ppm)</th>
<th>کادمویم (ppm)</th>
<th>جیوه (ppm)</th>
<th>کروم (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۸/۲۲</td>
<td>۵</td>
<td>۰/۴۱</td>
<td>۰/۱۳</td>
<td>۱/۵۵</td>
<td>۱/۵۴</td>
<td>۱/۰۱</td>
</tr>
<tr>
<td>۲</td>
<td>۸/۲۸</td>
<td>۴</td>
<td>۰/۴۸</td>
<td>۱/۵۹</td>
<td>۰/۳۸</td>
<td>۰/۸۴</td>
<td>۱/۰۱</td>
</tr>
<tr>
<td>۳</td>
<td>۸/۲۴</td>
<td>۳</td>
<td>۰/۸۲</td>
<td>۱/۷۹</td>
<td>۰/۳۸</td>
<td>۰/۳۵</td>
<td>۱/۰۱</td>
</tr>
<tr>
<td>۴</td>
<td>۸/۲۸</td>
<td>۲</td>
<td>۰/۳۳</td>
<td>۱/۴۲</td>
<td>۰/۳۸</td>
<td>۰/۳۱</td>
<td>۱/۰۴</td>
</tr>
<tr>
<td>میانگین</td>
<td>۸/۲۴</td>
<td>۲.۷۵</td>
<td>۰/۴۹</td>
<td>۰/۳۸</td>
<td>۰/۴۲</td>
<td>۰/۳۳</td>
<td>۰/۴۲</td>
</tr>
</tbody>
</table>

جدول ۳: نتایج آنالیز شیمیایی کمپوست کارخانه تهران

<table>
<thead>
<tr>
<th>مواد آلی</th>
<th>pH</th>
<th>شماره تهیه</th>
<th>کربن ازت (درصد)</th>
<th>سرب (ppm)</th>
<th>کادمویم (ppm)</th>
<th>جیوه (ppm)</th>
<th>کروم (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۸/۲۸</td>
<td>۵</td>
<td>۰/۴۱</td>
<td>۰/۱۳</td>
<td>۱/۵۵</td>
<td>۱/۵۴</td>
<td>۱/۰۱</td>
</tr>
<tr>
<td>۲</td>
<td>۸/۲۴</td>
<td>۴</td>
<td>۰/۳۳</td>
<td>۰/۳۸</td>
<td>۰/۳۸</td>
<td>۰/۵۱</td>
<td>۱/۱۰</td>
</tr>
<tr>
<td>۳</td>
<td>۸/۲۸</td>
<td>۳</td>
<td>۰/۳۸</td>
<td>۱/۷۹</td>
<td>۰/۴۲</td>
<td>۰/۳۸</td>
<td>۱/۰۱</td>
</tr>
<tr>
<td>۴</td>
<td>۸/۲۸</td>
<td>۲</td>
<td>۰/۴۲</td>
<td>۱/۴۲</td>
<td>۰/۳۳</td>
<td>۰/۸۴</td>
<td>۱/۰۱</td>
</tr>
<tr>
<td>میانگین</td>
<td>۸/۲۸</td>
<td>۲.۷۵</td>
<td>۰/۴۹</td>
<td>۰/۳۸</td>
<td>۰/۴۲</td>
<td>۰/۵۱</td>
<td>۱/۰۱</td>
</tr>
</tbody>
</table>

جدول ۵: نتایج آنالیز میکروبی کمپوست کارخانه خمین

<table>
<thead>
<tr>
<th>سالمونلا</th>
<th>کلم فرم مدفوعی در</th>
<th>شماره تعمیل</th>
<th>کلم فرم مدفوعی در</th>
<th>تعداد در</th>
<th>کلم فرم مدفوعی در</th>
<th>تعداد در</th>
<th>کلم فرم مدفوعی در</th>
<th>تعداد در</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۰۰</td>
<td>۴۳</td>
<td>۱۰۰</td>
<td>۴۳</td>
<td>۱۰۰</td>
<td>۴۳</td>
<td>۱۰۰</td>
<td>۴۳</td>
</tr>
<tr>
<td>۲</td>
<td>۷۵</td>
<td>۴۳</td>
<td>۷۵</td>
<td>۴۳</td>
<td>۷۵</td>
<td>۴۳</td>
<td>۷۵</td>
<td>۴۳</td>
</tr>
<tr>
<td>۳</td>
<td>۵۰</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۴۳</td>
<td>۵۰</td>
<td>۴۳</td>
</tr>
<tr>
<td>۴</td>
<td>۲۵</td>
<td>۴۳</td>
<td>۲۵</td>
<td>۴۳</td>
<td>۲۵</td>
<td>۴۳</td>
<td>۲۵</td>
<td>۴۳</td>
</tr>
<tr>
<td>۵</td>
<td>۱۰</td>
<td>۴۳</td>
<td>۱۰</td>
<td>۴۳</td>
<td>۱۰</td>
<td>۴۳</td>
<td>۱۰</td>
<td>۴۳</td>
</tr>
</tbody>
</table>

به ترتیب ۱/۸۴ و ۱/۸۴ درصد تهیه گردید. با عبور دانه مواد خارجی جدا شده از داخل سریا، ۲ میلی متر مقدار مواد خارجی بزرگتر از ۲ میلی متر در کمپوست تولیدی انتخاب مواد خارجی و درصد آنها در کمپوست خمین و تهران در شکل ۱ نشان داده شده است. مقدار مواد خارجی موجود در کمپوست تولیدی کارخانه های کمپوست خمین و تهران
بکثری و تبعیض گیری

نتایج آنالیز منحنی میزان متوسط دسته‌بندی کمیسیون‌های کمیسیون‌های تولیدی خمیس و تهران به میزان 0.43 درصد تعیین گردید.

کارخانه‌های کمیسیون‌های تولیدی خمیس و تهران به ترتیب بیش‌تر در میلیون‌ها و 450 درصد رسید. درصد خرده سکس برگردان از تهران به خرده سکس برگردان از خمیس بیشتر بود.

شکل 1: درصد مواد خارجی موجود در کمیسیون‌های کارخانه‌های کمیسیون‌های خمیس و تهران

بحث و نتیجه گیری

تشان می‌دهد که از لحاظ مواد آلمی این کمیسیون‌های دسته‌بندی خمیس با متوسط 37.4 درصد و کمیسیون‌های تولیدی تهران با متوسط 297 درصد مواد آلمی تقریباً در حدوده مناسبی قرار دارند. مقادیر مواد آلمی موجود در کمیسیون‌های تولیدی در هر دو نمونه کمیسیون، با مقادیر توصیه شده مواد آلمی برای کمیسیون‌های جریان marketability (standard) درصد مواد آلمی جهت کود کمیسیون‌های تولیدی 1 و درجه 2 به ترتیب 40 و 5 درصد تعیین شده است (110). برای این اساس با توجه به متوسط مواد آلمی نمونه‌های کمیسیون، این کمیسیون‌های تولیدی و کمیسیون‌های تولیدی که در دسته‌بندی خمیس و تهران بین بخش (5) که نمونه‌های کمیسیون‌های خمیس و تهران نسبت به یک محدوده و قابل قبول بودند مشابه از لحاظ درصد کربن، ازت، فسفر، پاسیمو و مواد آلمی نمونه‌های کمیسیون‌های تولیدی کارخانه‌های خط و تهران عبارت است از مواد سایر استاندارد ایران (12) اما کسب نمونه‌های کمیسیون‌های تولیدی تهران شرایط بهتری را دارد بود.

همان‌طور که در نتایج نشان داده شده است درصد های کریستال در مواد آلمی و نیتروژن در کمیسیون‌های تولیدی کارخانه‌های کمیسیون تهران میزان بالاتری داشت. از دلایل این امر می‌توان به نبرد باعث کردن ریز ریز توده های کمیسیون در کارخانه‌های کمیسیون
در مقررات کاهش پانوئز در کمپوست کلاس B توجه
به ب روی پایین و گردنگیری تعداد کلپیرم های مقدوبی
است. در این مقررات میزان کلپیرم های مقدوبی باشد کمتر
از 2 میلیون می باشد. مقدار باشد کمتر از 0.08 گرم کل پایین
در کمپوست کلاس A را فقط می توان برای بافته و جنگل کاری
کشت های صنعتی و یا اصلاح بافت ها که به ضعف استفاده
نمود (13).

با توجه به نتایج آنالیزهای میکروبی مدرج در جدول 4 و
5 واریه شده است. از آنجایی که هیچگونه معیار میکروبی
جهت کنترل کمپوست تولیدی در شهر وجود ندارد از میکروبی
معیارهای معیارهای میکروباتیک کمپوست تولیدی در گازهای
معیارهای (USEPA) آژانس حفاظت محیط زیست آمریکا (میکروباتیک
برای کمپوست جهت مصرف شکارزی از نظر پانوئز در
نظر گرفته است. این استانداردها برای کنترل کمپوست زمین،
توسعه یافته در باغ و فروش جهت استفاده در کشاورزی و
گلگری با حفظ محیط زیست و رعایت سلامت عموم تدوین
شدند. مقررات کاهش پانوئز در کمپوست کلاس A 4 از
5 واریه شده است. این مقررات برای وضعیت انسانی است که
معمولا به صورت خام توسط انسان مصرف می شوند (13).

جدول 4: مقررات کاهش پانوئز در کمپوست کلاس A (13)

<table>
<thead>
<tr>
<th>میکروبیکسیمی ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از 1000</td>
</tr>
<tr>
<td>1000 یا کمتر</td>
</tr>
<tr>
<td>10000 یا کمتر</td>
</tr>
<tr>
<td>کاهش پانوئز</td>
</tr>
<tr>
<td>بیشتر از 0.05</td>
</tr>
<tr>
<td>بین 0.05 و 0.1</td>
</tr>
<tr>
<td>بین 0.1 و 0.2</td>
</tr>
<tr>
<td>بیشتر از 0.2</td>
</tr>
</tbody>
</table>

جدول 5: جدول مقدار کلپیرم های مقدوبی در کمپوست کلاس A

<table>
<thead>
<tr>
<th>کلمبیا مقدوبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از 3</td>
</tr>
<tr>
<td>بین 3 و 6</td>
</tr>
<tr>
<td>بیشتر از 6</td>
</tr>
</tbody>
</table>

جدول 6: کمپوست تولیدی نیاز های محیطی با توجه
به جدول 4 و 5 واریه شده است.

تنظیم آنالیزهای میکروبی نمونه های کمپوست در جدول 4 و
5 واریه شده است. از آنجایی که هیچگونه معیار میکروبی
جهت کنترل کمپوست تولیدی در شهر وجود ندارد از میکروبی
معیارهای معیارهای میکروباتیک کمپوست تولیدی در گازهای
معیارهای (USEPA) آژانس حفاظت محیط زیست آمریکا (میکروباتیک
برای کمپوست جهت مصرف شکارزی از نظر پانوئز در
نظر گرفته است. این استانداردها برای کنترل کمپوست زمین،
توسعه یافته در باغ و فروش جهت استفاده در کشاورزی و
گلگری با حفظ محیط زیست و رعایت سلامت عموم تدوین
شدند. مقررات کاهش پانوئز در کمپوست کلاس A 4 از
5 واریه شده است. این مقررات برای وضعیت انسان مصرف می شوند (13).

جدول 4: مقررات کاهش پانوئز در کمپوست کلاس A (13)

<table>
<thead>
<tr>
<th>میکروبیکسیمی ها</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از 1000</td>
</tr>
<tr>
<td>1000 یا کمتر</td>
</tr>
<tr>
<td>10000 یا کمتر</td>
</tr>
<tr>
<td>کاهش پانوئز</td>
</tr>
<tr>
<td>بیشتر از 0.05</td>
</tr>
<tr>
<td>بین 0.05 و 0.1</td>
</tr>
<tr>
<td>بین 0.1 و 0.2</td>
</tr>
<tr>
<td>بیشتر از 0.2</td>
</tr>
</tbody>
</table>

جدول 5: جدول مقدار کلپیرم های مقدوبی در کمپوست کلاس A

<table>
<thead>
<tr>
<th>کلمبیا مقدوبی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کمتر از 3</td>
</tr>
<tr>
<td>بین 3 و 6</td>
</tr>
<tr>
<td>بیشتر از 6</td>
</tr>
</tbody>
</table>

جدول 6: کمپوست تولیدی نیاز های محیطی با توجه
به جدول 4 و 5 واریه شده است.

تنظیم آنالیزهای میکروبی نمونه های کمپوست در جدول 4 و
5 واریه شده است. از آنجایی که هیچگونه معیار میکروبی
جهت کنترل کمپوست تولیدی در شهر وجود ندارد از میکروبی
معیارهای معیارهای میکروباتیک کمپوست تولیدی در گازهای
معیارهای (USEPA) آژانس حفاظت محیط زیست آمریکا (میکروباتیک
برای کمپوست جهت مصرف شکارزی از نظر پانوئز در
نظر گرفته است. این استانداردها برای کنترل کمپوست زمین،
توسعه یافته در باغ و فروش جهت استفاده در کشاورزی و
گلگری با حفظ محیط زیست و رعایت سلامت عموم تدوین
شدند. مقررات کاهش پانوئز در کمپوست کلاس A 4 از
5 واریه شده است. این مقررات برای وضعیت انسانی است که
معمولا به صورت خام توسط انسان مصرف می شوند (13).
brای اندازه و محیط زیست استانداردهایی در مورد غلظت این فلزات در کمپوزیت وضع شده است از جمله آنها می توان به CCME، AAFC و کانادا (CCME، AAFC) اشاره نمود.

بر اساس اطلاعات شکل مقادیر سرب، چربی، کروم و کادمیوم در هر دو نمونه، از نظر استانداردهای اروپا و آمریکا در حد مطلوبی قرار داشته است. براساس آن نتایج بیشترین مقدار آلودگی به فلزات سنگین در هر دو نمونه مربوط به سرب است. با این وجود، مقدار فلزات سنگین در کمپوزیت تولیدی BNQ اشاره نمود (5.7، 6.9، 11.10، 20.00 و 21).

کارخانه کمپوزیت خمین نسبت به کمپوزیت تولیدی تهران و سایر استانداردها در حد مطلوب قرار داشته است. از دلیل این امر می توان به اجرای طرح تفکیک از مبدا در قسمت هایی از شهر خمین و همچنین تنوع بیشتر و مقدار بالا نسبت به شهر تهران، اشاره به همراه زیانهای خانگی در زیانهای شهر تهران اشاره نمود. طبق مطالعه کراس تیر مقدار آلودگی به فلزات سنگین در
کمپوست خمین و تهران از لحاظ مواد غذایی و آلودگی های میکروبی و مقدار فلزات سنگین در غالب مواد در محدوده استاندارد قرار داشته و قابلیت مصرف به عنوان عامل اصلاح کننده بافت خاک را داشته‌اند. جهت ارتقای کیفیت کمپوست تولیدی به لحاظ کاهش فلزات سنگین و تامین کلاس A میکروبی عملیات تکیک‌ک‌ آماده شده‌اند. این شرایط کاملاً ترموفیزیک در توده‌ها و خصوصیات میکروبی به عنوان دو استراتژی تایگر گزارد با پایین مورد توجه قرار گیرد.

منابع
5. RAL, Environmental label; blue angel product requirements – soil improve/ adjustment made from compost. RAL detaches institute fur gutesicherung und kennzeichnung (www.blauer-engelde); 1998.
Study on the Quality and Comparing of the Compost Produced by Khomain and Tehran Compost Factories

*Farzadkia M.1, Salehi S.1, Ameri A.1, Joneidy Jafari A.1, Nabizadeh R.2
1Department of Environmental Health Engineering, School of Public Health Iran University of Medical Sciences, Tehran, Iran
2Department of Environmental Health Engineering, School of Public Health Tehran University of Medical Sciences, Tehran, Iran

Received 22 April 2009; Accepted 18 July 2009

ABSTRACT

Backgrounds and Objectives: Over than 70% of solid wastes is consisted of food wastes with high putrecibility in Iran. Due to this regard, construction of composting factories for sanitary disposal or fertilizer production from solid wastes was very appreciated in our country. The objective of this research was to study on the quality and comparing of the compost produced by Khomain and Tehran compost factories.

Materials and Methods: This study was accomplished on the compost produce from Khomain and Tehran compost factories about 9 months. For investigation of chemical qualities of these materials, some indexes such as percentage of organic materials, carbon, nitrogen, phosphorus, potash and heavy metals consists of lead, cadmium, mercury and chromium were measured. Microbial quality of these compost materials were defined by assessing of the amounts of coliforms bacteria, salmonella bacteria and parasites ova.

Results: The average amounts of some indexes in compost of Khomain and Tehran were been: organic materials % (37.77, 29.80), carbon % (22.14, 18.12), nitrogen % (2.08, 1.6), lead (229.6, 59.44 ppm), and chromium (70.2, 19.75), respectively. The microbial quality of these compost samples were agreement with class B of USEPA guidelines.

Conclusion: This study showed that quality of organic materials percent in Tehran’s samples was better than Khomain’s samples, but these indexes on these samples were lower than the grade No.2 of compost. The percentage of carbon, nitrogen and potash in these samples were desirable but, phosphorus amount were not in sufficient. The heavy metals especially lead and chromium in Tehran’s samples were higher than Khomain’s samples, but these samples were usually in agreement with guidelines of compost. Due to the defined microbial qualities, these samples could be used as well as amendment agents for poor soil.

Key words: Compost, Municipal Solid Waste, Tehran, Khomain

*Corresponding Author: mehdifarzadkia@yahoo.com
Tel: +98 21 88779118 Fax: +98 21 88779487