امکان سنگی کاربرد فرآیند تصفیه الکتروشیمیایی در تجزیه پروپیلن گلیکول در آب های آلوده

نعتت الله جعفرزاده حقیقی فرد، امیررضا طالیب خوزه‌یان، محمدرضا طالیب خوزه‌یان، سهند جرفی

نوبنده مسئول: شیراز، بلور، مدرسه تلویزیون، بلور آزادگان، موسسه آموزش عالی جامی

مجله سلامت و محیط زیست، قصنا، نمایشگاه محیط ایران

دوره دوم، شماره چهارم، رستاق، 278، صفحات 469 تا

چکیده

کیفیت و هدف: پروپیلن گلیکول ترکیبی است که در بسیاری از صنایع به کار می‌رود و در فاضلاب صنعت نیز با میزان زیاد مصرف می‌شود.

تغییراتی که پروکسیکی در فلز‌های بالا ساخته کودک و کاهشی با مشکلاتی همراه است. هدف از این مطالعه بررسی تجزیه الکتروشیمیایی پروپیلن گلیکول و درک برخی پارامترهای مورد استفاده را در افزایش ترکیب یافته یا در این روش به‌دست آورده است.

روش بررسی: در این مطالعه ۲۰ نمونه از فلز‌های الکتروشیمیایی انتخاب شد. برای بررسی این روش تغییراتی که پروکسیکی در این مطالعه از دست داده‌های الکتروشیمیایی و الکتروشیمیایی مختلف ۵ الی ۳۰ ولت استفاده گردید. با توجه به موارد تاثیر گلیکول کلیفی، مانند این میزان‌های مختلف الکتروشیمیایی توسط برخی محققین، این آزمایش‌ها در فلز‌های مختلف کاری که به سبب نیز انجام شد.

پایان‌ها: در بهترین شرایط انرژی انرژی قادرهای حذف ۴۰ درصد آبی‌زیان خواهی شیمیایی (COD) فلزات و بدون واردات نیز به دست آمد نیز نشان داد که افزایش آبی‌زیان و افزایش در افزایش غلظت کلیفی-fold و همچنین افزایش زمان آلوده به افزایش رساندن حذف می‌گردد.

روش مانند بیشتر در این مطالعه حدود ۵۰ دقیقه به دست آمد. از میان انواع الکتروشیمیایی مورد استفاده در این مطالعه الکتروشیمیایی بلافاصله را به‌دست آورده که نمی‌تواند که یک شرکتی از این مورد به‌وجود می‌آید موارد متفاوت‌تری نکند (کلینیک های جراحی الکتروشیمیایی) مربوط می‌گردد.

نتیجه‌گیری: نتایج این مطالعه نشان داد استفاده از این روش در تصفیه پیشرفته فلزات صنعتی حاوی ترکیب پروپیلن گلیکول به زودی

عوامل کلیدی: تصفیه الکتروشیمیایی، فلزات صنعتی، پروپیلن گلیکول

واژگان کلیدی: تصفیه الکتروشیمیایی، فلزات صنعتی، پروپیلن گلیکول

1- دکتری بهداشت محیط، دانشگاه بهداشت دانشگاه علوم پزشکی گنجچی شایرو آبی
2- کارشناس ارشد و عضو هیئت علمی گروه عمارت و محیط زیست، موسسه آموزش عالی جامی
3- دکتری شیمی، استادیار دانشگاه مهندسی دانشگاه اصفهان
4- دانشجوی دکتری بهداشت محیط، دانشگاه علوم پزشکی دانشگاه تربیت مدرس
در دانشگاه فنی و منابع طبیعی تهران، بخش آب و هیدرولوژی، گروه آب و هیدرولوژی، ویژاک از آزمایشگاه‌های پژوهشی در این بخش است. عدم وجود فضای کاری مناسب در این بخش منجر به استفاده از فضاهای کاری غیررسمی می‌شود که منجر به سایر مشکلات نیز می‌شود.

مردم این بخش به دلیل عدم وجود فضای کاری مناسب، به شدت مشورت دارند و به بهره‌برداری از فضاهای غیررسمی می‌پردازند. این مشکل در این بخش مطرح شده است و باید به‌طور دقیق بررسی شود تا در پیشگیری از مشکلات مزера به مدت کمتری در این بخش بتوانستند.

در این بخش، مطالعات علمی و تحقیقاتی به گونه‌ای انجام می‌شود که در این زمینه جامعه‌ای با منابع طبیعی و آب به بهره‌برداری از فضاهای غیررسمی می‌پردازند. این مشکل در این بخش مطرح شده است و باید به‌طور دقیق بررسی شود تا در پیشگیری از مشکلات مزера به مدت کمتری در این بخش بتوانستند.

در این بخش، مطالعات علمی و تحقیقاتی به گونه‌ای انجام می‌شود که در این زمینه جامعه‌ای با منابع طبیعی و آب به بهره‌برداری از فضاهای غیررسمی می‌پردازند. این مشکل در این بخش مطرح شده است و باید به‌طور دقیق بررسی شود تا در پیشگیری از مشکلات مزера به مدت کمتری در این بخش بتوانستند.
در این مطالعه از الکترودهای آهور، مس، روز، آلومینیوم و برخی آبزای همچنین برنج و صفحات حلبی و کالویزه جهت تعیین بهترین و کارآمدترین الکترود در ولتاژهای مختلف استفاده کرد. کلیه مراحل آزمایش در مقياس آزمایشگاهی و در برشی با حجم 1000 میلی لیتر انجام پذیرفته، در این مطالعه One factor at a time تغییرات یک عامل در زمان (the time) برای تعیین بهترین الکترود استفاده گردید و هیچ روش آماری مورد استفاده قرار نگرفت.

به منظور شروع کار ابتدا آزمایش ها با کمک الکترودهای مختلف با فاصله 2 سانتی متر از یکدیگر و دقیقاً مانند شرایط فوق و میسیم تایم داده شده در شکل 1 انجام شد. به عنوان مثال الکترودی که بالای آن کاراکتر را از طرف مورد به 10 میلی متر قرار داده شد. به نتایج یک الکترود مورد استفاده قرار گرفت، در بخش بعدی این مطالعه بکار رفته است و یک الکترود مورد استفاده قرار گرفت.

پس از انجام آزمایش ها با کمک برای ثبت اطلاعات از برق پنداخته شد.

برای تعیین زمان ماند مکمل بس از تعیین شرایط بهینه (تعیین جنس الکترود مناسب و اختلاف تنشیل مناسبی، آزمایش در زمان های ماند مختلف از 10 تا 90 و 5 دیفیسه تا کیلوگرم) برای تعیین زمان ماند بهینه، تاثیر گلظت بودن کلر نانویی از پدیدار و کنترل سیستم به مناسب بررسی گردید. در این بخش از بررسی از گلظت های مختلف کلر سیستم جهت تعیین گلظت مناسب آن در روش الکترودسیمایی استفاده شد.

توجه فاضلاب مصنوعی

برای تولید نمونه مورد نیاز از آب آشامیدنی همراه با مقدار COD مشخصی پروپیلن گلیکول جهت استabilیزی به 200 میلی گرم بر لیتر استفاده گردید. مشخصات آب مورد استفاده در تهیه فاضلاب مصنوعی در جدول 1 میلی متر داده شده است.

جدول 1: مشخصات مبدل برق به کار گرفته شده در مطالعه

<table>
<thead>
<tr>
<th>ولتاژهای قابل تولد بر حسب ولت</th>
<th>5، 10، 15، 20، 25، 30، 35، 40، 45، 50 ولت</th>
</tr>
</thead>
<tbody>
<tr>
<td>ورودی</td>
<td>AC</td>
</tr>
<tr>
<td>خروجی</td>
<td>DC</td>
</tr>
<tr>
<td>آمپرس خروجی</td>
<td>1000 میلی آمپر</td>
</tr>
<tr>
<td>فراکسیون ورودی</td>
<td>50 میلی هرتز</td>
</tr>
</tbody>
</table>

* fig: نمودار شبیه‌سازی پیوسته تاریخ‌های واحدی و دوست تاریخ‌های واحدی.
روش های آزمایشی

از روش تعبیر میزان آکسیژن خواهی شیمیایی (COD) جهت تعبیر مقدار حرف پروپیونیک گلیکول استفاده شده، و تعیین نیز به روش تقابلی از آنگی اگرفت (13). برخی از مشخصات چنین روش معمولاً بر دیجيتال ساخت شرکت زنیوس انجام شد. برای تعیین هدایت الکتریکی و pH شرکت دستگاه EC متردیجیتال استفاده گردید.

جدول ۲: کیفیت شیمیایی آب مورد استفاده در نهای زمان‌بندی مصنوعی

<table>
<thead>
<tr>
<th>کل جاده‌های محلول</th>
<th>کل ترشی امیا</th>
<th>یکسان</th>
<th>سختی بر حسب میکرو گرم لیتر</th>
<th>کلیم</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۵۵</td>
<td>۵۵۲</td>
<td>۱</td>
<td>۲۰۰</td>
<td>۳۳۲</td>
<td>۷</td>
</tr>
</tbody>
</table>

به علت کیفیت کنترلی آب مورد استفاده در نهای زمان‌بندی مصنوعی

یافته‌ها

الف. بررسی الکترودی مختلف

بررسی الکترودی مختلف جهت تعیین کیفیت الکتروشیمیایی به کار گرفته شد. از میان این الکترودی، الکترودی با جنس آلومینیوم بهترین پاسخ را در حذف COD ایجاد نمود. شکل ۳ بیان حذف الکترود را در زمان مناسب ۵۰ دقیقه نمایش می‌دهد. نتایج نشان داد که راندمان حذف پروپیونیک گلیکول توسط الکترودی آلومینیومی حداکثر بوده و برای ۵۶ درصد می‌باشد. در مطالعه‌های دیگر همکاری‌ها نیز بر روی الکترودی کانترل الکترودی آلومینیومی در میان شیب الکترودی بیان گردیده که روند در مطالعه آنها به عنوان بهترین الکترودی شناخته شد (۶). بر اساس ایجاد الکترودی آلومینیومی، در مطالعه آنها به عنوان بهترین الکترودی شناخته شد (۶). بر اساس ایجاد الکترودی آلومینیومی، در مطالعه آنها به عنوان بهترین الکترودی شناخته شد (۶).

ب. بررسی الکترودی مختلف

بررسی الکترودی مختلف جهت تعیین کیفیت الکتروشیمیایی به کار گرفته شد. از میان این الکترودی، الکترودی با جنس آلومینیوم بهترین پاسخ را در حذف COD ایجاد نمود. شکل ۳ بیان حذف الکترود را در زمان مناسب ۵۰ دقیقه نمایش می‌دهد. نتایج نشان داد که راندمان حذف پروپیونیک گلیکول توسط الکترودی آلومینیومی حداکثر بوده و برای ۵۶ درصد می‌باشد. در مطالعه‌های دیگر همکاری‌ها نیز بر روی الکترودی کانترل الکترودی آلومینیومی در میان شیب الکترودی بیان گردیده که روند در مطالعه آنها به عنوان بهترین الکترودی شناخته شد (۶). بر اساس ایجاد الکترودی آلومینیومی، در مطالعه آنها به عنوان بهترین الکترودی شناخته شد (۶).

در این مطالعه عاملی بر سرعت حذف آلودگی

در این مطالعه عاملی بر سرعت حذف آلودگی
در شکل ۴ افزایش زمان ماند از ۳۰ دقیقه به ۶۰ دقیقه منجر به افزایش ۳ درصدی راندمان شده است اما افزایش زمان برمی‌گردد و با افزایش زمان ماند از ۶۰ دقیقه تا ۱۲۰ دقیقه افزایش ۱۴ درصدی راندمان مشاهده می‌گردد. با توجه به نتایج بدست آمده در این مطالعه زمان ماند مناسب در حدود ۵۰ دقیقه پیشنهاد می‌شود.

در شکل ۵ نیز برازش وابستگی بازدهی حذف به زمان ماند نمایش داده شده است. در این برازش معادله $x^2 = 0.01$ با ضریب همبستگی ۹۵ درصدی راندمان حذف پروپیون گلیکول در زمان های مختلف پیشنهاد می‌گردد. شکل ۵ نیز نشان می‌دهد که افزایش زمان ماند تا حدود ۵۰ دقیقه تاثیر مستقیم و خطی بر افزایش بازدهی حذف پروپیون گلیکول به چاک می‌گذرد و در مداری ماند بالاتر میزان تابع پذیری بازدهی حذف از زمان ماند به صورت مشخص کاهش می‌یابد.

چ. بررسی تأثیر زمان ماند بر راندمان فردی تصفیه الکتروشیمیایی

شکل ۴ وابستگی راندمان تصفیه الکتروشیمیایی به زمان و اکتش را نشان می‌دهد. افزایش زمان ماند در بسیاری از روش‌های تصفیه می‌تواند منجر به تمسک بیشتر بین ماده آلاینده و عامل تصفیه کننده شده و راندمان‌های افزایش دهد. ولی معمولاً افزایش زمان ماند تصفیه در اثر افزایش زمان ماند تناسب خطی نداشته و این میزان پس از طی زمان مشخص (که این زمان بستگی به نوع فرآیند تصفیه دارد) دیگر منجر به افزایش قابل توجهی در راندمان تصفیه نمی‌گردد. همانطور که مشخص است در این مطالعه گره‌گی با افزایش زمان ماند تا حدودی راندمان حذف پروپیون گلیکول از محیط افزایش می‌یابد، اما افزایش زیاد این زمان ماند منجر به افزایش چشمگیری در راندمان نمی‌گردد.

شکل ۴: راندمان حذف COD در زمان های ماند مختلف

شکل ۵: راندمان حذف COD مربوط به زمان ماند و درصد حذف مربوط به محیط

- تأثیر وابستگی کلرید سدیم بر راندمان حذف
- وجود کلرید سدیم در محیط به دو دلیل می‌تواند باعث افزایش راندمان حذف آلودگی در روشهای الکتروشیمیایی گردد. اول افزایش عبور جریان برق از فاضلاب (به دلیل افزودن هیدات الکتریکی) که منجر به رسیدن میزان بیشتر الکتریکی به موان آلی موجود در فاضلاب شده و تجربه الکتروشیمیایی را به شدت افزایش می‌دهد. دوم این که کلرید سدیم در اثر
دلیل میزان بهبود کاری در سدیم ذکر شده، تقریباً در توادان کمترین شوری در آب ایجاد نمی‌شود.

بحث و نتیجه‌گیری

در این مطالعه بررسی کاری روش الکتروشیمیایی مورد بررسی قرار گرفت و نشان داد به این روش جهت تصفیه فاضلاب‌های صنعتی نیز می‌تواند بسیار مفید باشد. باید به این نکته توجه شود که به دلیل مصرف انرژی زیاد در روش الکتروشیمیایی استفاده از آن جهت تصفیه بیشتر به فاضلاب (فاضلاب‌های با غلظت آلوده کم) توجهی می‌گردد. مهم ترین نتایج به دست آمده شامل موارد زیر است:

1. این مطالعه نشان داد که به مناسب‌گرایی الکتروشیمیایی استفاده گردد.
2. افراد که با طور مناسبی به عنوان فاضلاب راندمان حدف COD در تصمیم‌گیری فاضلاب‌های حاوی پروپیل کلیکول با کمک روش الکتروشیمیایی می‌گردد. در این مطالعه مشخص شد که جریان منبج مبتنی بر تغییر مقابله متغیر در آن راندمان تصفیه الکتروشیمیایی را نسبت به کاربرد جریان مستقیم بسیار کند می‌نماید.

با کاربرد الکترودهای با جنس‌های مختلف، الکترود آلومینیومی بالاترین بازده حذف را نشان داد که این امر توسط برخی مقفیونی نیز کارایی محیط بهبود می‌دهد.

افزایش زمان ماند تنها در میزان منجر به افزایش راندمان حذف COD و افزایش بیش از سایر دیگر دلیل افزایش مجموع جامدات محلول و شوری آب مطلوب می‌باشد. بنابراین غلظت بهبود کاری سدیم در محیط حدوداً ۳۰۰ میلی گرم در لیتر بیشته‌ای می‌شود. چنین افزایشی در بازده حذف ترکیبات آلی از انتقال غلظت کاری SED بتوسط پانیزا (Panizza) و همکارانش نیز گزارش گردیده (۷). آنها طعم نمونه کلیکرد در آب با بحران شیرینی بی‌ویژگی زمینه که کاتیون غلظ در محیط بیون سدیم ناشی ۲۵۰ میلی گرم در لیتر است، هم چنین زمینه که کاتیون بی‌غلافی در آب کلسیم و میتریون باشند بی‌ویژگی کلیکرد در آب تا غلظت افزایش راندمان نسبتاً مطلوبی نیز در راکتور الکتروشیمیایی ایجاد نمی‌شود.

دنیشن زمینه ایجاد کاری ۶۷٪ تولیدی می‌نماید که بسیار اساس‌نامه بوده و به تجزیه ترکیبات آلی به شدت کمک کند (۷).
1. Agnieszka, Z (a)., Tomasz, G., Joanna, Z., Magdalena, F., Rafal, F., Tomasz, K., and Zenon, L., Biodegradation of poly(propylene glycol)is under the conditions of the OECD screening test Chemosphere. 2007 67(5) : 928–933.
Evaluation of Electrochemical Treatment in Degradation of Wastewater Contaminated by Propylene Glycol

Jaafarzadeh Haghighi fard N.*, Talaiekhozani A.R. 2, Talaiekhozani M.R. 3, Jorfi S. 4

1 Department of Environmental Health, School of Health, Ahwaz Jondishapour University of Medical Sciences, Ahwaz, Iran
2 Department of Civil Engineering and Environment of Jami Institute of Technology, Delijan, Iran
3 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
4 Department of Environmental Health Engineering. Tarbiat Modaress University, Tehran, Iran

Received 17 August 2009; Accepted 24 October 2009

ABSTRACT

Backgrounds and Objectives: Propylene glycol is applied in many industries as raw material and can be released to the environment through wastewater of such industries. The biological treatment of solutions containing high concentration of propylene glycol is difficult and some problems can be observed during this process. The main objective of this study was the investigation of electrochemical degradation of propylene glycol and the parameters influencing on improving removal efficiency.

Materials and Methods: In this study the degradation of propylene glycol was made by passing an electrical current though the synthetic wastewater containing propylene glycol. In order to investigate this process several types of electrode with applied voltage ranging between 5 to 50 V was used. Due to the effect of NaCl concentration on removal efficiency which was mentioned in the literature, the experiment was performed for different NaCl concentrations.

Results: In optimum condition, the maximum removal efficiency of propylene glycol (based on COD) was obtained equal to 90%. The results showed that rising applied voltage, NaCl concentration and retention time increase the removal efficiency. The optimum retention time was obtained equal to 50 min. The maximum removal was obtained when aluminum electrode was used. It can be attributed to the production of coagulant material such as Al3+ during this process.

Conclusion: The results revealed that this process can be useful for treating the industrial wastewater containing propylene glycol.

Key words: Electrochemical treatment, Industrial wastewater, Propylene glycol

*Corresponding Author: atalaie@jami.ac.ir
Tel: +98 917 3161034 Fax: +98 866 4225678