ارایه گزینه‌های ارتفا و یزدگی‌های کیفی رودخانه مهران شهر تبریز با هدف استفاده مجدد

رضا هدفان زاده ریحانی، حسن اصلانی، بهزاد افشارفرغ شمس، بهاره فرشی

Aslani.ha@Gmail.com

تویسند مسئول: نخست، دانشگاه علوم پزشکی تهران، دانشکده بهداشت، گروه بهداشت محیط

دربار: 2020/08/11

چکیده
زمن و هدف: به دلیل محدودیت بودن منابع قابل دسترس آب، کاهش میزان نرخ‌های حیاتی، افزایش جمعیت و توسعه شهرنشینی و گسترش صنایع، استفاده بهینه از منابع موجود آب و گاز‌های از آلودگی آن که در جهت توسعه بیمارستان و حفظ محیط زیست و سلامت و بهداشت عمومی می‌باشد. به‌کنار این امر، این مطالعه، دانش ویژه‌گان رودخانه مهران رود و تعبیه آلوده‌های آنی به‌نیتی آن به فاصله‌‌های شهری و بی‌پروانه و طبقه‌بندی آن بر اساس شاخص‌های داخلی کیفیت آب و نهایتاً ارائه راهکارهای مدیریتی برای بهبود کیفیت آب می‌باشد.

روش بررسی: پیمانه‌ای شیمیایی فیزیکی و شیمیایی دی‌پی‌یو-دی‌بی‌ای و ارزیابی در بسته‌بندی‌های ماهیتی در دو اثر: کنترل و غیرکنترل. تغییرات در دوی.DO, pH, COD, TSS, NOx, BOD

پایته ها: نتایج حاصل از این مطالعه نشان داد که بی‌پروانه‌گرایی که وارده آنی شد به‌منظور تعيین نمودن محل‌های دقیق انتشارات رودخانه، ورود روان‌های داخل شهری و انتقال فاصله‌های شهری صورت گرفت. در این پیمانه تحلیل‌های ویژه‌ای در خصوص محل‌های نمونه برداری و نقش منشی‌های فاصله‌های نزدیک به‌منظور بررسی‌های اتاقی در خصوصیات فیزیکی، شیمیایی و بیولوژیکی اجرا گردید.

1- دکتری بهداشت محیط، استادیار دانشگاه بهداشت دانشگاه علوم پزشکی تبریز
2- زنگنه کارشناس ارشد بهداشت محیط، دانشگاه علوم پزشکی تهران
3- کارشناس ارشد عمران محیط زیست، شرکت مهندسین مساح تهران صنعت فرآین
4- کارشناس بهداشت محیط، شرکت مهندسین مساح آتش نشان تبریز
آرزوی توانمندی کیفی رشد و توانمندی مهارتی

مقدمه
امروزه اصلی ترین تغییرات در مورد آب‌های سطحی، مساله کیفیت آب هاست. به دلیل استفاده از مصرف و توزیع آب‌های زیرزمینی و زیرزمینی از مهم‌ترین سایر افزایش‌های زمین‌شناسی از جمله افزایش در مورد امکانات
کیفیت آب آشامیدنی برای بهداشت عمومی و کیفیت آب خام
برای زندگی آبی‌زیان، نیاز به ارزیابی کیفیت آب‌های سطحی
افزایش می‌یابد (2) و همکاران در سال ۳۵۰۰ دانستنی که دلالات بیش از حد کیفیت آب‌های سطحی افزایش محسوسی تاسیس صنایع جدید، کشاورزی، تحلیل فاضلاب‌های سطحی و
هم‌چنین مانع آلودگی غیر تعطیل ای نظیر مواد شیمیایی شسته‌نشده از خانه‌های کشاورزی یا باند و در اثر فعالیت‌های رودخانه‌ها تا حدود زیادی قدرت خود را از
حقیقت آب‌های سطحی یک منطقه
تحت تأثیر عمل فردی‌ناتوانی طبیعی (مردان رسوب‌های تازگی،
شراکت آب‌های خاکی و مواد کشاورزی) و اثرات غیر طبیعی
نظیر فعالیت‌های صنعتی و کشاورزی می‌باشد (5 و 6). تحلیل
فاضلاب‌های سطحی و صنعتی به عنوان یک منبع آلودگی ناتاب
محصول می‌شود در حالی که روایت‌های سطحی به عنوان
منابع قبلی فلک می‌شوند که بخشی بیش تر تحت تأثیر شرایط آب و
هوایی منطقه می‌باشد. نوسانات فصلی، میران رسوب‌های تازگی
در رودخانه‌ها، حجم روایت‌های سطحی ورودی و سطح
آب‌های زیرزمینی از تغییرات و تغییرات آب‌رودخانه
واکنش به تغییرات می‌گویند که کیفیت آب به آب‌های سطحی
در تنهایی غلظت مواد آلوده کند. این دارد (5 و 6). به دلیل
این که روی‌ها به عنوان اصلی ترین منابع تاثیر ماهی‌گیری
شهری، صنعتی و کشاورزی به شمار می‌روند پیشگیری و
کنترل آلودگی‌های رودخانه و داشتن اطلاعات لازم در مورد
کیفیت آب برای مدیریت مناسب از ضروریات امر محسوب
می‌شود. از نقطه تغییرات دوره‌ای و شیمیایی، داشتن
برنامه‌کننده منظم برای پیش بینی مغول کیفیت آب روی‌ها
ضروری به نظر می‌رسد. علاوه بر این تشخیص منابع آلودگه
نوبت‌زا و برق‌گیری که روی‌ها از شرایط فصلی می‌باشد
و تعیین خصوصیات کمی اینگونه برای کنترل موثر آلودگی ها و
مدیریت مناسب منابع آب‌پروری می‌باشد (9).
مسیل مهارت رود می‌تواند توانسته و افق‌اندازه شرایط تبریز
سپاسی برای استفاده با اتفاق کننده مطالعاتی که به توجه می‌رسید
به شناسایی، ارزیابی و کنترل می‌سازند زیر می‌گذرد. مطالعات مربوط
وردودی به مسیل مهارت رود بوده است. ورود فاضلاب از نقاط
مختلف و از طریق سیستم‌های آخر آب‌های سطحی
درون شرایطی و تحلیل زیالی و نخاله‌های شرایطی در حالت
این مسلب سبب ایجاد مناطق زمینی به دست تولید. تجهیز
خیابان‌ها و همچنین مناطق زمینی به دست آمده است. افزایش‌هایی در
تغییرات در این مانا و فعالیت‌های رودخانه‌ها تا حدود زیادی قدرت خود را از
دست می‌دهند (3 و 4). کیفیت آب‌های سطحی یک منطقه
تحت تأثیر عمل فردی‌ناتوانی طبیعی (مردان رسوب‌های تازگی،
شراکت آب‌های خاکی و مواد کشاورزی) و اثرات غیر طبیعی
نظیر فعالیت‌های صنعتی و کشاورزی می‌باشد (5 و 6). تحلیل
فاضلاب‌های سطحی و صنعتی به عنوان یک منبع آلودگی ناتاب
محصول می‌شود در حالی که روایت‌های سطحی به عنوان
منابع قبلی فلک می‌شوند که بخشی بیش تر تحت تأثیر شرایط آب و
هوایی منطقه‌ای می‌باشد. نوسانات فصلی، میران رسوب‌های تازگی
در رودخانه‌ها، حجم روایت‌های سطحی ورودی و سطح
آب‌های زیرزمینی از تغییرات و تغییرات آلودگی‌ها
و نقاط ارتباطی و نتایج کاربرد در مطالعه به منظور
تغییر نقاط نمونه برداری، مشخص شدند (شکل 1) و بر این
اساس ۱۲ نقطه نمونه برداری مشخص گردید. بالاخره نمایی
ایستگاه‌های انتخاب شده برای نمونه برداری محل اتصال و
ورود روی‌ها داخل شرایطی می‌باشد. نقاط نمونه برداری
از تابع ۳۱ تا ۲۵ منبعی که آدرس محل‌های فازی شده
انهای خاص پیش‌بینی‌های خاص در جاده‌های تهران
برای تریبیس (۳۱)، نقاط بالا شرکتی و میلی (۲۲)، ابتداً جاده‌های کلی
(۲۲)، نقاط بالا شرکتی و میلی (۲۲)
حسن اصلانی و همکاران

یافته‌ها

جدول ۱ نتایج آزمایش‌های شیمیایی آب رودخانه مهران
را به همراه مقادیر حداقل، حداکثر، میانگین و انحراف معیار در طول مسیر نشان می‌دهد. به نوسانات مقطعی تمامی خصوصیات شیمیایی آب رودخانه مهران به ویژه از استفاده S8 به بهبود در حال افزایش می‌باشد.

پیش‌ترین میزان آلودگی به خصوصیات از نظر جامدات عامل و کدورت مریبوت به استفاده S11 و در محل اتصال شاه‌خانه دوم به رودخانه آزمایش گردیده است.

در جدول ۲ نتایج آزمایش‌های شیمیایی آب رودخانه به همراه مقادیر حداقل، حداکثر، میانگین و انحراف معیار در طول مسیر مهران رود نشان داده شده است. در استفاده Q1 قبل از ورود مهران رود به شکل غلظت آکسیژن محلول بالا ۱۷/۲۶ درصد از مقدار مورد نظر از وجود ورود روانگراف شاه‌خانه از مناطق مشکوک و احتمالاً فاش‌های حیاتی متصول به گویه‌های محیط و اکسیدان و خیابان دوم آن است. از غلظت آکسیژن محلول Q1 در شاخته‌های قرار دارند که از دامنه کوه‌های عالی بنا شده‌اند. سبب به دلیل عدم ورود آلودگی شری در حالت اجازه‌ای است. در محل اتصال‌های شاه‌خانه فرعی مزبور به بعد میزان جریان آب بخش بر تر شده و غلظت آکسیژن محلول در تمامی ایستگاه‌ها بالاست.

(S3)، روی روز دندان شکر در (S4) قبل از ورودی شاه‌خانه سرم مسجدیم از کره غشت (S5) زیر بل یک کارائی (S6) زیر بل پلاستیک (S7) زیر پلاستیک آتربی‌بن (S8)، زیر پلاستیک آتربی‌بن (S9) و زیر پلاستیک آتربی‌بن (S10)، هیدرات اسید (S11)، زیر گذش این نتایج (S12)، زیر گذش این نتایج (S13) و (S14) ترتیب و قبل از ورودی شاه‌خانه آزمایش گردید. نتایج این آزمایش‌ها به وسیله نرم‌افزارهای Excel و SPSS صورت گرفته است. برای تبدیل آب به سطحی از Water Quality Index فرمول تعریبی استفاده شده است.

در این فرمول ضریب ثابت است که برای آب‌های خیلی و سطحی، ترتیب آب (S15) به دست آمده است.

QS = F(r) T(r) P(r) x (S16)

فناوت و ترتیب است که از ۴ بار پاترهای مهم مانند pH، TSS و BOD منجر به است. برای تعبیر آن‌لایت کیفیت منابع آب اختصاصی از ۹ پاترهای BOD, DO, TDS, pH, واکنش (S17) می‌باشد.

فناوت و ترتیب است که از ۴ بار پاترهای مهم مانند pH، TSS و BOD منجر به است. برای تعبیر آن‌لایت کیفیت منابع آب اختصاصی از ۹ پاترهای BOD, DO, TDS, pH, واکنش (S17) می‌باشد.

C_{m} = \frac{C_{1}Q_{1} + C_{2}Q_{2} + \ldots + C_{n}Q_{n}}{Q_{1} + Q_{2} + \ldots + Q_{n}}
روش‌های کیفی و روش‌های متران... ارتقاء ویژگی‌های کیفی در محیط آب و جنوبی از مرکز شهر و بخشی از مناطق مسکونی بومور می‌تواند با توجه به اینکه با توجه به اینکه محدوده‌های متغیر مقدار TSS به‌طور قابل توجهی به‌طور قابل توجهی تداوم یافته است. شاخص تندیسی از طریق فاصله‌های دلپذیری هستند.

جدول 1: خلاصه نتایج آنالیز خصوصیات فیزیکی و شیمیایی رودخانه متران رود در بحث سال 1388

<table>
<thead>
<tr>
<th>S12</th>
<th>S11</th>
<th>S10</th>
<th>S9</th>
<th>S8</th>
<th>S7</th>
<th>S6</th>
<th>S5</th>
<th>S4</th>
<th>S3</th>
<th>S2</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mg/L)</td>
<td>TSS</td>
<td>(NTU)</td>
<td>(TCU)</td>
<td>0C</td>
<td>میزان</td>
<td>حداکثر</td>
<td>حداقل</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>438</td>
<td>1900</td>
<td>300</td>
<td>TSS</td>
<td>348</td>
<td>345</td>
<td>342</td>
<td>339</td>
<td>336</td>
<td>333</td>
<td>330</td>
<td>327</td>
</tr>
<tr>
<td>243</td>
<td>330</td>
<td>320</td>
<td>NO3</td>
<td>213</td>
<td>210</td>
<td>207</td>
<td>204</td>
<td>201</td>
<td>198</td>
<td>195</td>
<td>192</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>NO2</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>15</td>
<td>NH4</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>12</td>
<td>PO4</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>8</td>
<td>P-total</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>8</td>
<td>COD</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>8</td>
<td>B.O.D</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
حس اصلی و همکاران

در شکل 2 نتایج آزمایش های میکروبی آب رودخانه در طول مسیر مهاران رود نشان داده شده است. اگر استخراج های S_5 و S_7 را که مربوط به شاخه شمالی رودخانه می باشد از نموندات حذف کنیم، می بینیم که غلظت کلیفرم ها به تدریج در طول مسیر افزایش می یابد که بیشترین میزان مربوط به استخراج S_9 است.

بحث و نتیجه گیری

با ملاحظه نتایج معکوس شده در جداول 1 و 2 ملاحظه می شود که هر چه رود در طول مسیر مهاران رود به سمت پایین دست حرکت می کنم پارامترهای مهم کیفیت فاضلاب قابل توجهی دارند و این افزایش حاکی از آن است که در طول مسیر، جریان هایی با بار آلودگی فراوان وارد رودخانه شده و کیفیت آن را به سطح بسیار پایین تا نزول می دهند. با بررسی مطالعات لاجم و گرفته در طول مسیر پس از به دست آمدن نتایج، معلوم شد که اغلب جریان هایی که از طریق پایین وارد رودخانه می شوند به دلیل عدم کامل بودن پوشش شبکه گیر یوز فاضلاب و وارد کردن غیرمجاز فاضلاب های خانگی به داخل آب رودهای خیابانی منتهی به مهاران رود، آلوده به فاضلاب

کلیفرم مصرف

کلیفرم مصرف

100E+08
100E+07
100E+06
100E+05
100E+04
100E+03

0
5
10
15
20
25

شماره استخراج

شکل 2: نتایج میکروبا در فضای فلزات

کلیفرم مصرف
درجه سوختگی نیترات و بیوتیک

فیلتریکی مرتبط به چگونگی بهبود دستی رودخانه نیز نشان می‌دهد که هرچه به سمت پایین دست رودخانه حركت می‌کنیم، آب از لحاظ ظاهری کاملاً کدر شده و تبدیل به فاضلاب می‌گردد. البته این امر احتمالاً به روزهای بارانی تدارد و این روند در تمام فصول سال که رودخانه در آب هست قابل مشاهده است و آکر کایل آلوده می‌باشد. البته ایستگاه سو به دلیل قرار گیری در شاخه شمالی و آرام شدن جریان در یک مسیل نسبتاً به را به دلیل رسوب گذاری تقریباً نسبت به سایر نقاط زلال می‌باشد. یکی از دلایل کل آلودگی بودن بهش از حد آب در حال حاضر، فعالیت‌های شهرداری در مسیل رودخانه برای ایجاد معابر و خیابان و توسعه فضای سبز و ایجاد مترو در قسمت‌هایی از ایستگاه رودخانه است. با دقت در شکل 4 ملاحظه می‌شود که در انتهای مسیر که فعالیت‌های بسیار و متغیر و روش‌های گوناگون به همراه بهبود تدریجی در حال انجام است.

بررسی پارامترهای فیزیکی آب رودخانه نیز نشان می‌دهد که هرچه به سمت پایین دست رودخانه حركت می‌کنیم، آلیاً سرم و فزارهای سطحی ناشی از تخلیه از کارخانه‌های کوچک صنعتی و روناه‌های سطحی ناشی. کاهش شدت BOD5 در استیگاه S4 تیز نشان دهنده اثر بی‌آن بودن نوان خودپالایی رودخانه نیز نشان دهنده اثر بی‌آن بودن نوان خودپالایی رودخانه S5 تیز نشان دهنده اثر بی‌آن بودن نوان خودپالایی رودخانه. از استیگاه S4 تا به انتهای سری که رودخانه وارد محدوده بی‌پر از دخانی شهد و در نتیجه مناظر بار آلودگی وارد به دلیل وجود صنایع بومی توجه رگنرژی، ریسک‌پیش و سایر صنایع کوچک موجود در داخل شهر که معمولاً فاضلاب تولیدی شان غیرقابل تجزیه بیولوژیکی است، افزایش پیدا کرده است. یکی از دلایل اصلی افزایش اکسیژن محلول در طول مسیر اقامت‌های بهداشتی در سیر و ایجاد متناسبی آب مناسب (که باعث جذب بهترکردن می‌شود) است، که توسط شهرداری تبریز در حال انجام است.

شکل 3: تغییرات DO و BOD5 در رودخانه

Date: 14-1522 (IRDT) on Saturday September 19th 2020
بحث فضایی سبز موجود در اطراف رودخانه در طول مسیر و دیگری وجود باغات سبز کاری بر وسعت های پیاز زیاد در قسمت های نهایی این رودخانه می باشد که اثری از منابع آب زیرزمینی برای آبیاری آنها استفاده می شود. با توجه به کمبود منابع آب در صورت مناسب بودن کمیت آب رودخانه می توان از آن به عنوان منبعی برای آبیاری سیستم حیات استفاده نمود.

جدول ۳ ارتباط بین باران‌های مختلف کیفی رودخانه مهران را نشان می دهد. با دقت در این جدول ملاحظه می شود که بین رابطه مثبت بسیار بالایی وجود دارد و این نشان دهنده ماهیت شیمیایی آلاینده‌های ورودی به این رودخانه می باشد (۱۲). همچنین ملاحظه می شود که بین NO3 و TSS (۹۷/۶۵) نیز ارتباط معنی داری وجود دارد.

در حال حاضر وضعیت کنونی رودخانه با توجه به نتایج به دست آمده از این مطالعه نشان دهنده نامناسب بودن شرایط رودخانه و به آب این رودخانه براساس طبقه بندی Water Quality Index-(WQI) (۱۰) مهم ترین منبع ورود فسفر ناشی از مواد شوینده و پاک کننده موجود در فاضلاب های خانگی می باشد که با میزان تابی در طول مسیر وارد رودخانه شده و به دلیل عدم خودپالایی رودخانه و عدم مصرف فسفر در آب رودخانه تجمع می یافته و بر غلظت آن افزوده می گردد. شاید بکی دیگری از دلایل افزایش بیش از حد مقدار فسفات و نیترات در قسمت های نهایی رودخانه ناشی از ورود زهاب های باغات سبزی کاری حاشیه رودخانه باشد.

در بحث استفاده مجدد دو مورد قابل بررسی می باشد. یکی
جدول 3: ارتباط پارامترهای مختلف مهاران رود

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>BOD₅ (mg/L)</th>
<th>COD (mg/L)</th>
<th>P-total (mg/L)</th>
<th>PO₄-P (mg/L)</th>
<th>NH₄-N (mg/L)</th>
<th>NO₂⁻ (mg/L)</th>
<th>NO₃⁻ (mg/L)</th>
<th>pH (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجت 1</td>
<td>17</td>
<td>23</td>
<td>27</td>
<td>15</td>
<td>4</td>
<td>20</td>
<td>15</td>
<td>0.7</td>
</tr>
<tr>
<td>درجت 2</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>14</td>
<td>4</td>
<td>20</td>
<td>21</td>
<td>0.7</td>
</tr>
<tr>
<td>درجت 3</td>
<td>21</td>
<td>24</td>
<td>25</td>
<td>15</td>
<td>4</td>
<td>20</td>
<td>20</td>
<td>0.7</td>
</tr>
<tr>
<td>درجت 4</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>14</td>
<td>4</td>
<td>20</td>
<td>20</td>
<td>0.7</td>
</tr>
</tbody>
</table>

از 50 برآورد شده که در این حالت آب از نظر طبقه بنیادی کیفی در رتبه 2 طبقه بنیادی می‌شود. بنابراین تأثیر حاکی از ناظر کولت از دیدگاه شرایط کیفی بوده و انجام اقدامات اصلاحی جهت ساماندهی رودخانه جهت ارتقای کیفی آب ضرورت نام دارد.

در قالب 3 سال‌بندی پیشنهادی، شرایط کیفی آب با استفاده از برآورد شاخص کیفی شیب سازی شده است. با بررسی این سال‌بندیاها می‌توان از نگاه به امکانات موجود از دیدگاه مدیریت اقدامات لازم را صورت داد. سال‌بندی‌های مورد مطالعه جهت ارایه راهکارهای مناسب مدیریتی به شرح زیر است.

وضعیت شیب سازی شده یکی از سال‌بندی‌های مطرح شده در شکل 7 قابل ملاحظه می‌باشد.

واضح می‌شود، با توجه به اینکه در 35 برآورد شده که در این حالت آب از نظر طبقه بنیادی کیفی در رتبه 2 طبقه بنیادی می‌شود. بنابراین تأثیر حاکی از ناظر کولت از دیدگاه شرایط کیفی بوده و انجام اقدامات اصلاحی جهت ساماندهی رودخانه جهت ارتقای کیفی آب ضرورت نام دارد.
حس اصلی‌تر و همگان

![نمودار]

شکل ۴: تغییرات فصلی WQI در نقاط نمونه برداری

آب شیرین به داخل تلخه رود تخلیه می‌گردد. در شرایط فعالی با کم‌بو به رنگ آبی و افزایش روند خشکسالی این منبع آب شیرین از دسترس خارج می‌گردد. اگر این آب تصفیه شده مجدد به داخل رودخانه در پالایش وارد گردد به دلیل شیب زیاد رودخانه و هوایی طبیعی امکان خودپالایی بسیار بالاست و مجدداً می‌تواند برای یک فضای سبز و توسعه آن مورد استفاده قرار گیرد. بنابراین با این نکته می‌توان به کنترل ورودی های مهران رود به روش‌های متداول تصفیه، جریان به میزان ۴/۵ متر مکعب در نهایی در ابتدا رودخانه در

![نمودار]

شکل ۵: تغییرات شاخص کیفی آب (WQI) در ایستگاه‌های نمای مهران رود توسط به استگاه ۵۱ در ستاره‌های مدرنیتی

فاصله از ایستگاه اول (متر)

وضعیت گرینه ۱ گرینه ۲ گرینه ۳

![نمودار]

شکل ۶: تغییرات شاخص کیفی آب (WQI) در ایستگاه‌های نمای مهران رود توسط به استگاه ۵۱ در ستاره‌های مدرنیتی
ارتفای ویژگی‌های کیفی رودخانه‌های مهران...

ایستگاه ۱ وارد شد.

هیمن گونه که در شکل ۴ نمایش می‌دهد با کنترل ورودی‌های فضایی به‌طور مرسوم، دیگر تغییر کیفیت زیادی را انتظار داشت. درصد رتبه ۹۳ و ۸۹ درصد میزان دیگر رودخانه‌ها در شبکه ۱، میزان ویژگی‌های کیفی رودخانه‌های دیگر و میزان ویژگی‌های مرتبط می‌شود. در صورتی که فقط به تصفیه منابع نقده ای بپردازیم و آنها را کنترل کنیم، گرچه شرایط از نظر کیفی اندکی بهبود می‌یابد ولی در رتبه بندی گذشته در کلاس رودخانه‌ها و بهبود شرایط کیفی به گونه‌ای که مناسب کاربری‌های سطح بالاتر را درج نمی‌کند. در ضمن، این که تصفیه‌های مداوم بر روی کاهش درج‌یافته‌های منعی داری ندارد، لذا در صورت اعمال گزینه ۱

هم‌چنان غلظت‌های رودی می‌سازد. در تجربه ۴۵۰ لیتر در ثانیه آب بر بالاتر رودخانه‌ها است. میزان تغییر کیفی قابل ملاحظه‌ای را در کفیت رودخانه‌های میزان محدود به مهار رود و جلوگیری از کلیه منابع نقده ای ورود فاضلاب به مهارت‌های مورد مرحله تازه: شناسایی و کنترل منابع آلودگی در بالاتر در ابتدا نمود. خود که تصفیه‌جاتی رودخانه‌ها، این رودخانه‌ها روی کاهش حداکثر است. لذا کفیتی در طی مسیر رودی تنزل خواهد داشت. در صورت اعمال این شیوه مدیریتی به دنبال ترکیب قابل توجه می‌توان گل‌فیت دست‌گاه‌ها را نیز به مقادیر قابل کاهش داد. از نظر رتبه بندی کفیتی در صورت اعمال این گزینه ۸۹ درصد موارد رتبه کفیتی رابطه ۳ و بالاتر کفیتی رابطه ۲ است در گزینه ۳ مدیریت تلفیقی کفیتی آب رودخانه در نظر گرفته.

شده است، در این گزینه علاوه بر ترکیب ۴۵۰ لیتر در ثانیه آب بلندایست، تصفیه مداوم پساب ها نیز می‌توان ارتفاعات و کاربرد های مناسبی از آب و رودخانه در مسیر می باشد انتظار داشت. در این حالت ۱۲ درصد موارد آب رودخانه در رتبه ۳ و در ۸۹ درصد موارد از رتبه ۲ یک طبقه می‌شود. با توجه به موارد فوق اجتناب از دیگر جهت‌سازیهای

رودرنک پیشنهادی می‌شود:

مرحله اول: ترکیب ۴۵۰ لیتر در ثانیه بسیار تصفیه شده تصفیه‌خانه فاضلاب شهر تبریز در بالاتر چنین جهت ترکیب و افزایش نوع خودبالایی رودخانه و بهبود سریع وضعيت کیفی آن، بدسته‌ای است که اماکن سنجی نیست، انتقادی و اجلاس‌های این کار از طریق مطالعات مهندسی رودخانه‌ای دنیال شود نا از عدم بروز سیل اطمنیان حاصل شود.

مرحله دوم: اجرای خطوط فاضلاب رو به محدوده‌های مهار رود و جلوگیری از کلیه منابع نقده ای ورود فاضلاب به مهارت‌های مورد مرحله سوم: شناسایی و کنترل منابع آلودگی در بالاتر ابتدا غلظت خالصه کفیتی به گونه‌ای که مناسب کاربری‌های سطح بالاتر را درج نمی‌کند. در ضمن، این که تصفیه‌جاتی رودخانه‌ها، این رودخانه‌ها روی کاهش حداکثر است. لذا کفیتی در طی مسیر رودی تنزل خواهد داشت. در صورت اعمال این شیوه مدیریتی به دنبال ترکیب قابل توجه می‌توان گل‌فیت دست‌گاه‌ها را نیز به مقادیر قابل کاهش داد. از نظر رتبه بندی کفیتی در صورت اعمال این گزینه ۸۹ درصد موارد رتبه کفیتی رابطه ۳ و بالاتر کفیتی رابطه ۲ است در گزینه ۳ مدیریت تلفیقی کفیتی آب رودخانه در نظر گرفته.
3. Ho KC, Chow YL, Yau JTS. Chemical and microbiological qualities of The East River (Dongjiang) water, with particular reference to drinking water supply in Hong Kong. Chemosphere. 2003;52(9):1441-50.
Giving Alternatives for Improvement of Qualitative Features of Mehran River in Tabriz for Reuse

1Department of Environmental Health Engineering, School of Health and Nutrition, Tabriz University of Medical Science, East Azarbaijan Iran
2Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Science, Tehran, Iran
3Farabin Consulting Engineers Tabriz Company, East Azarbaijan, Iran

Received 31 January 2010; Accepted 22 April 2010

ABSTRACT

Backgrounds and Objectives: Shortage of available water resource and deficiency of rainfall, increasing in population growth and industrial development, suitable use of water resources and pollution prevention is an essential issue in accord with sustainable development and environmental protection. Present study shows the qualitative status of Mehran River and determines its pollution or non pollution to municipal wastewater and to assess qualitative characteristics of the water according to international water quality index.

Materials and Methods: Padding strand of MEHRAN River from source to end has been done for wistful determination of branches, runoff and wastewater entrances, etc. Necessary decisions were made for determining sampling points and critical and effective points on water quality then water samples were analyzed to determine chemical and microbiological characteristics.

Results: Results showed the average of BOD 5, COD, TSS, NO 3, DO, pH, Turbidity and color are about 80±30, 155±58, 1013±637, 7.3±2, 4.5±3.5 mg/l, 7.2±1, 385±238 NTU, 122±70 TCU respectively.

Conclusion: It could be concluded that the Mehran River is completely polluted with municipal sewage and is unsanitary. Water quality index varies in the range of 41-52 and the water is classified as number 4. At present the river is in a dangerous ore toxic state and could not be considered as drinking water resource or needs more advanced water treatment units.

Key words: Mehran River, Pollution, Wastewater, Water quality index

*Corresponding Author: Aslani.ha@gmail.com
Tel: +98 21 88951582 Fax: +98 21 88950188