مقايسه کارایی سیستم لجن فعال متعارف و پرکه تثبیت فاضلاب در حذف کیست تک یاخته و تخم انگل- مطالعه موردی: تصفیه خانه فاضلاب
کرمانشاه و گیلانغرب
چشمید درایت، علی الماسی، کیمرث شریفی، حبیب مسکنی، عبدالrahی درگاهی
نویسنده شناسی: کرمانشاه، بلور شهد شرودی، خیابان دانشگاه، دانشکده پزشکی، گروه بهداشت مطبیق
دریافت: 98/04/03
پذیرش: 98/12/01
چکیده
زمینه و هدف: یکی از مهم‌ترین خصوصیات کیفی در مورد استفاده مجدد پساب، کیست میکروبی آن است. هدف از این مطالعه تعیین کارایی تصفیه خانه فاضلاب کرمانشاه (سیستم لجن فعال متعارف) و گیلانغرب (سیستم پرکه تثبیت) در حذف کیست تک یاخته و تخم انگل بوده است.
روش بررسی: در این تحقیق به مدت ۶ ماه و هر پنج روز یک بار از ورودی و خروجی تصفیه خانه نمونه برداری شد. آنالیز‌های ژنتیکی جهت استاندارد کیست و تخم انگل‌ها طبقاتی در روش جدید، پیشنهاد می‌باشد. حجم حفره ویا ۰/۰۱ میلی لیتر، به همراه کیفیت آب تهیه شد.
یافته‌ها: نتایج نشان داد که میانگین کل تعداد تخم انگل ها و کیست تک یاخته ها در پساب خروجی از تصفیه خانه کرمانشاه به ترتیب برابر با ۲۲/۲۲ و ۴۹/۲۳/۲۵ به راه اندازی تخم انگل کیست انگل می‌باشد. این مقدار در حالت که هیچ کیست و تخم انگل در پساب خروجی تصفیه خانه گیلانغرب مشاهده نشد و راهاندازی حذف این به پارامتر ۱۰۰۰/۰ برآورد گردید. با توجه به اینکه کیست و تخم انگل در پساب خروجی می‌تواند تخم انگل بوده و کیست پساب خروجی هر دو تصفیه خانه مرتب به کمک آکورس لامپ ناک‌يوکسید بود.
نتایج کلی: با توجه به تابعی از نتایج که کارایی هر دو تصفیه خانه از لحاظ حذف کیست و تخم انگل ها مطابق بوده و کیست پساب خروجی هر دو تصفیه خانه از نظر میزان تخم نمایندگی با نشان‌گر آزمایشگر (تعداد تخم نمایندگی: اک ۱ مقدار) مطابقت دارد.
واژگان کلیدی: لجن فعال، پرکه تثبیت، کیست و تخم انگل، کرمانشاه، گیلانغرب

1- دکتری بهداشت محیط، استادیار دانشکده بهداشت دانشگاه علوم پزشکی کرمانشاه
2- دکتری بهداشت محیط، دانشیار دانشکده بهداشت دانشگاه علوم پزشکی کرمانشاه و پژوهشکده تحقیقات توسعه اجتماعی و ارتقاء سلامت زاگرس
3- دانشجوی کارشناسی ارشد بهداشت محیط، دانشکده بهداشت دانشگاه علوم پزشکی کرمانشاه
4- دانشجوی کارشناسی ارشد میکروبیولوژی، کارشناس آزمایشگاه میکروبیولوژی، دانشکده بهداشت، دانشگاه علوم پزشکی کرمانشاه.
مقیده

استفاده مجدد از فاضلاب خانگی توصیه شده به عنوان یک
مربع ارزشمند در برای مصارف مختلف از جمله کشاورزی و
آبیاری. برای سیستمی که از مهم ترین اهداف تصفیه فاضلاب
و محققین از منابع ویرزشی در مناطق کم املاح سوی می‌گردد
(1 و 2). استفاده مجدد از فاضلاب به ویژه در بخش کشاورزی
دارای منفعتی نسبی از جمله منافع اولیه (سود حاصل از فروش
پاساژ، کاهش میزان غرق و تبیز می‌باشد) استفاده
از موانع معمول منطقی و بی‌روشی موجود در فاضلاب و
در تریبون کاهش مصرف کودهای شیمیایی، کاهش هزینه ها
و کاهش مصرف آب مشتریان، منافع ناتوان، اثرات متعاون
پروازهای استفاده مجدد از فاضلاب (حفظ
محیط زیست و بهبود کیفیت و زیبایی آن) (3).

آنچه اهمیت فرآیندی در مناسب بودن کیفیت پساب استفاده
شده به ویژه از نظر میکروبی و اندازه آن با استانداردی هم معتبر
(30-40%).

در استفاده مجدد از پساب آرگ به کیفیت میکروبی پساب
و جنبه های بهداشتی آن توجه نشود. خطر جدی برای بهداشت
و سلامتی انسان و محیط زیست به همه خواهی داشتیم، این
موضوع زمانی مهم تر خواهی به که در پساب برای آبیاری
فاضلاب سیر معمول و بارک و مصالح خارجی از جمله
صیفی جات و سیبزیات استفاده شود (51). به منظور
زدایش عوامل آلایند وجود فاضلاب از جمله مواد آلی و
عوامل اتیور از جمله معده فراگذاری دو راهی
تنظیم می‌باشد که نگهداری به که به یک انتخاب
و ترکیب می‌باشد. این مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
و به صورت تصادفی انتخاب گردیده. زمان مطالعه و محدوده
نمونه برداری به گونه‌ای طراحی و تدوین گردیده است که
نمونه برداری به دست آمده قابلیت تعمیم به جامعه آماری مورد
مطالعه را دارد. عملیات جمع آوری اطلاعات به صورتی تنظیم
و اجرای که زمان برقراری قرار گرفت. روزهای نمونه برداری در طول هفته
واو
بی‌حا حجم ۳ میلی لیتر منتق شد و قبلاً از انتقال لام به روی میکروسکوپ ۵ دقیقه به حال سکون گذاشته شد. سپس در CH-30ORF200 Olympus توسط میکروسکوپ ترد ۲۰۰ ساخت زاین با برگ تراشی ۱۰۰ و ۴۰ جهت شناسایی و شمارش کیست و تخم انگلها مشاهده گردید و بعد از این استفاده فرمول زیر تعداد کیست و تخم انگلها در یک لیتر تولیده شده دست آمد.

\[N = AX/PV \]

در نهایت داده‌های مربوط به کیفیت پساب در هر دو سیستم تصحیح گردید که گروهی با استفاده از تی‌تست آزمون آماری (p-value) و داده‌های مربوط به مقایسه‌ی راندمان duo سلسله در حذف کیست و تخم انگلها با انجام آزمون آماری T-Test در گروهی با استفاده از تی‌تست آزمون آماری T-Test، سطحه نهایی و نتایج حاصل مربوط به کیفیت پساب با استانداردهای موجود در این زمینه مطابقت داشت.

جدول ۱: میانگین کل تخم انگلها در فاضلاب خام و ورودی و پس پرس تنفیذ فشار خروجی از توصیف خانه فاضلاب شهرهای کرمانشاه و گیلانغرب

<table>
<thead>
<tr>
<th>راندمان حذف (۵)</th>
<th>هر ۹۶/۱۲۳</th>
<th>۸/۳۸۳</th>
<th>۵۸/۵۱۴</th>
<th>۵۸/۵۱۹</th>
<th>۵۸/۵۲۰</th>
<th>۵۸/۵۲۱</th>
<th>۵۸/۵۲۲</th>
<th>۵۸/۵۲۳</th>
<th>۵۸/۵۲۴</th>
<th>۵۸/۵۲۵</th>
<th>۵۸/۵۲۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>خروجی X</td>
<td>۵۸/۵۱۹</td>
<td>۵۸/۵۲۰</td>
<td>۵۸/۵۲۱</td>
<td>۵۸/۵۲۲</td>
<td>۵۸/۵۲۳</td>
<td>۵۸/۵۲۴</td>
<td>۵۸/۵۲۵</td>
<td>۵۸/۵۲۶</td>
<td>۵۸/۵۲۷</td>
<td>۵۸/۵۲۸</td>
<td>۵۸/۵۲۹</td>
</tr>
<tr>
<td>کیلاغرب X</td>
<td>۵۸/۵۱۹</td>
<td>۵۸/۵۲۰</td>
<td>۵۸/۵۲۱</td>
<td>۵۸/۵۲۲</td>
<td>۵۸/۵۲۳</td>
<td>۵۸/۵۲۴</td>
<td>۵۸/۵۲۵</td>
<td>۵۸/۵۲۶</td>
<td>۵۸/۵۲۷</td>
<td>۵۸/۵۲۸</td>
<td>۵۸/۵۲۹</td>
</tr>
</tbody>
</table>

تعداد تخم‌های شمارش شده به طور خودکار در ۱ لیتر تولیده شده دست آمد

**سپس ۹۰۰ مایع روی را با استفاده از سیفون خارج تولیده و رسوب باین مانند را یا توجه به حجم آن به چند لوله سانتریفیوزساخت شیمی‌فی فان آرم. انتقال داده و سپس در ۱۰۰۰ به مدت ۱۵ دقیقه سانتریفیوز شدند. سپس کل رسوب لوله‌های سانتریفیوز را به یک لوله سانتریفیوز انتقال داده و مجدد در ۱۰۰۰ به مدت ۱۵ دقیقه سانتریفیوز شدند. در ادامه یک برابر حجم رسوب تشکیل شده در مرحله ی دوم سانتریفیوز، با آماری استیک (pH=۱۵) و در برای حجم آن، استات آبی به لوله سانتریفیوز اضافه گردید و بعد از این زدن کامل آن توسط همزن در ۱۰۰۰ به مدت ۱۵ دقیقه سانتریفیوز شد. با انجام این مرحله سیستم به داک و پام‌های لوله‌های سانتریفیوز‌شده، تکرار شد که هم‌بسی سیستم باید در وسط خام و پس پرس تخم انگلها در دسترس باشد. به دو سیستم

* و بعد از آن رسوب نهایی (لاه باشی) را در پنجم حجم سولفات مورد حساب (۱/۸۰) بر روی کل ساغر و سپس نجات ومیرزابی و انتقال گردید. و ماده شیمیایی مورد استفاده در تشخیص و شمارش کیست و تخم انگلها فرآوری کرده‌اند. بعد از این به وسیله پیپت پاپریک میکروپسولن ۱ لام سکر ساخت فوکا آسمانه‌ها و گیلانغرب.
یافته‌ها

بر اساس نتایج حاصل تعداد کل کیست تخم و تخم در فاضلاب خام و روی در تصفیه خانه فاضلاب شهرهای کرمانشاه و گیلانغرب میانگین‌های در فاضلاب و روی در تصفیه خانه فاضلاب شهرهای کرمانشاه و گیلانغرب مشابه گردید و نتایج تعداد را به حتم اختصاص داد (23). با توجه به نتایج حاصل و انجام آزمون آماری T-Test و نتایج متعددی که مقدار میانگین به سطح معناداری α = 0/05 می‌توان گفت که مقدار میانگین به دست آمده باید در میان گزارشات تخم نمایندگی یکی‌بندی شده هر سیستم تصفیه، با اختلاف معناداری از مقدار توصیه شده در استانداردهای مربوط به استفاده مجدد از پساب در کشاورزی و آبیاری (15 عدم در لیتر) کمتر است (20).

بحث

بر اساس نتایج حاصل مشخص شد که پیش‌ترین تخم تخم انگل‌ها در فاضلاب خام و روی در شکر مرطب به تخم آکاسکارس لیبرکوونیس است و این بدین معناست که در حال حاضر نیز آبلوگی به کرم آکاسکارس در سطح جامعه بالاتر از آقایان از آن‌ها باید با توجه به موضع‌گیری مشابه طبقات دارد. میزان زاده و مجموعی گزارش‌های نمونه‌گیری که پیش‌ترین تخم نمایندگی در پساب و روی در تصفیه خانه شهرهای مشابه تخم تخم انگل‌ها در سطح جامعه تخم نمایندگی لیبرکوونیس است.
است. به نظر من رسد مکانیسم حفظ تخم و کیست انجل در سیستم برعکس ای متاثر از زمان ماند نسبتا طولانی این فرآیند و امکان نشانی در آن است. عدم تحقیق تخم و کیست انجل در سیستم مذکور با احتمال قریب به یقین می‌باشد. به این طریق در مراحل سیستم است. در حالی که در سیستم لجن فعال زمان ماند در محدوده نشانی زمانی نسبتا کوتاه و فرصت کافی برای تعیین عوامل نظر وجود ندارد. از طریق چسبیدن با سواز تندخ و کیست انجل ها به لحاظ های ناشی از تخلخل بایسته چناروی و خروج آن ها به پاس شده، امکان است کارایی فرآیند لجن فعال نسبت به فرآیند برکه ای کمتر نشان دهد. بدیهی است که برای تحقیق حاضر ممکن به شده است. نتایج آزمایشات انجام گرفت بر روی نمونه های پساب خروجی از تصفیه خانه فضایی کیلاغرب (با سیستم برکه تثبیت) نشان می کنند که در هیچ کدام از نمونه ها، تخم نشانی مشاهده نشد. این آزمایش دهنده است که سیستم برکه تثبیت فضایی کیلاغرب زمان دارای کامل کیست و تخم انگل ها را دارد. زمان ماند نسبتا طولانی و جریان آرام توان با اختلال فرآیند نشانی و نهایتاً با استوربهای انسیست در لجن که نشان شده برای تخم و کیست انگل ها فراهم می‌نماید. این حالت در برکه های تثبیت فضایی، زمان دارای تخم انگل ها را نیاز به درمان دارد. فرآیند را نیاز به پساب و گل‌برکه می‌نماید. این موضوع مورد نیاز خاصی به فردی که مطالعه Amahmid برکه های تثبیت را 100/960 غار شده است(24).

نتیجه‌گیری
نتایج آزمایشات انجام گرفته بر روی نمونه‌های پساب خروجی از تصفیه خانه فضایی کیلاغرب آزمایشات (با سیستم لجن فعال متعامد نشان می‌دهد که میانگین کل تعداد تخم انگل و کیست تا پایان ها به ترتیب برای یا 42/0/960۱/2۱/۲۵/۱۰۰۰۰ میلی‌متر در هیچ لیتر است در حالی که هیچ کیست و تخم انگل‌ها در پساب خروجی از تصفیه خانه فضایی کیلاغرب بافت نشده است. در واقع با توجه به این تخم و کیست انگل در سیستم مذکور با احتمال قریب به یقین می‌باشد. به این طریق در مراحل سیستم است. در حالی که در سیستم لجن فعال زمان ماند در محدوده نشانی زمانی نسبتا کوتاه و فرصت کافی برای تعیین عوامل نظر وجود ندارد. از طریق چسبیدن با سواز تندخ و کیست انجل ها به لحاظ های ناشی از تخلخل بایسته چناروی و خروج آن ها به پاس شده، امکان است کارایی فرآیند لجن فعال نسبت به فرآیند برکه ای کمتر نشان دهد. بدیهی است که برای تحقیق حاضر ممکن به شده است. نتایج آزمایشات انجام گرفت بر روی نمونه های پساب خروجی از تصفیه خانه فضایی کیلاغرب (با سیستم برکه تثبیت) نشان می کنند که در هیچ کدام از نمونه ها، تخم نشانی مشاهده نشد. این آزمایش دهنده است که سیستم برکه تثبیت فضایی کیلاغرب زمان دارای کامل کیست و تخم انگل ها را دارد. زمان ماند نسبتا طولانی و جریان آرام توان با اختلال فرآیند نشانی و نهایتاً با استوربهای انسیست در لجن های نشان شده برای تخم و کیست انگل ها فراهم می‌نماید. این حالت در برکه های تثبیت فضایی، زمان دارای تخم انگل ها را نیاز به درمان دارد. فرآیند را نیاز به پساب و گل‌برکه می‌نماید. این موضوع مورد نیاز خاصی به فردی که مطالعه Amahmid برکه های تثبیت را 100/960 غار شده است(24).
نتیجه‌گیری‌گان برخود لازم می‌دانند که از کمپانی پژوهشی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی کرمانشاه به خاطر تامین هزینه‌های مالی این طرح تحقیقاتی (با شماره تقدیرات و قدردانی نمایند.

ثبت ۹۱م، معاون عموم محترم شرکت آب و فاضلاب استان کرمانشاه، به خاطر همکاری لازم در انجام این تحقیق، تشکر و قدردانی نمایند.
The Efficiency Comparison of Conventional Activated Sludge and Stabilization Pond Systems in Removal of Cysts and Parasitic Eggs (A case Study: Kermanshah and Gilangharb Wastewater Treatment Plants)

Derayat J., *Almasi A., Sharafi K., Meskini H., Dargahi A.
Department of Environmental Health Engineering, Kermanshah Health Research Center (KHRC), Kermanshah University of Medical Sciences, Kermanshah, Iran

Received; 24 November 2010 Accepted; 20 February 2011

ABSTRACT

Background and Objectives: Microbial quality, particularly parasitic characteristics in terms of effluent reuse in agriculture is one of the most important indices. The aim of this study is determination of removal efficiency of Kermanshah wastewater treatment (conventional activated sludge) and Gilangharb wastewater treatment plants (stabilization ponds) for cyst and parasitic eggs.

Material and Methods: In this study research samples were taken once in five days from both inlet and outlet of wastewater Plants within a period of five months. The identification and counting of cyst and parasitic eggs were carried out by Mac master slide according to Bailenger method.

Results: The findings shows that mean of parasitic eggs and protozoan cysts in effluent of Kermanshah wastewater treatment plant were 0.99±0.42 and 0.90±0.25 per liter respectively, indeed removal efficiency for parasitic eggs and cysts are %98.42±3 and %97.5±4.5 respectively, but, any parasitic eggs and protozoan cysts in Gilangharb wastewater treatment plant was not observed and removal efficiency of these tow parameters was %100. Ascaris lumbricoides eggs had most number in influent and effluent of both plants.

Conclusion: As results show, removal efficiency for cysts and parasitic eggs in both above mentioned are desirable, and the quality of effluent treatment plant of both the rate of nematode eggs Anglbrg index (number of nematode eggs: 1 ≥ number per liter) is consistent.

Key words: Activated sludge, Stabilization ponds, Cysts, Parasitic eggs, Kermanshah, Gilangharb treatment plant

*Corresponding Author: alialmasi@yahoo.com
Tel: +98 831 8281992, Fax: +98 831 8263048