ارایه چارچوب مناسب جهت بررسی وضعیت کیفی رودخانه مزرعی اطرک

روه الله نوری، فاطمه جعفری، دیانا فرمن اصغرزاده، عباس اکبرزاده

نویسنده مسئول: تهران، موسسه تحصیلات آب و زارتر نیرو

دریافت: 12/9/89
پذیرش: 95/3/200

چکیده
زمینه و هدف: رودخانه اطرک یکی از منابع اصلی تأمین آب استان های خراسان رضوی، خراسان شمالی و کلستان بوده که از اهمیت ویژه‌ای برخوردار است. در این مقاله، تحقیق مکرر ارایه چارچوب مناسب جهت بررسی وضعیت کیفی آب رودخانه اطرک انجام شده است.

روش بررسی: در کامی اول انتخاب ابستگی‌های مناسب در طول رودخانه وضعیت کیفی آب با استفاده از مدل شناخت کیفی آب (WQI) تعیین گردید است. مدل دوم این تحقیق به بررسی و طبقه‌بندی وضعیت ترورفیکی بازده‌های مختلف رودخانه اختصاص یافته و در نهایت نیز با توجه به محدودیت‌های مدل WQI و مدل کیفی رودخانه بر مبنای شناخت کیفی مهم کل جامعات محلول (TDS) بر مبنای مدل توصیه شده اکنون (1986) ارایه شده است.

پایه‌های: نتایج این تحقیق بر مبنای مدل WQI به طورکلی بیان گر قرارگیری کیفی آب رودخانه در بین‌ابستگی‌های مورد بررسی در دسته‌بندی متوسط می‌باشد. نتایج بررسی وضعیت ترورفیکی این رودخانه نیز مشخص نموده که به‌عده ایزدی از باره رودخانه در وضعیت معیار قرار دارد. در نهایت نیز پایه‌های خواص از منابع سازی کیفی بر مبنای مدل آخر مشخص نمود که عمده‌سوری در هر چهار ایستگاه مورد بررسی شامل شوری نرمال باشد و به‌ویژه در پایان بوده و مبتنی بر انتخابی شده در این تحقیق

نتیجه‌گیری: با توجه به کمیت و حجم اطلاعات کمی و کمیت و حجم اطلاعات دقیق، که در غیر ارائه شده در حال تهیه، مدلولژی ارائه شده در این تحقیق

می‌تواند جهت اطلاع کلی از وضعیت کیفی این دیگر رودخانه‌های نیز مورد استفاده قرار گیرد. نتایج این مقاله در ادامه تحقیقات این موضوع به‌ویژه در روندهای مدیریت و اصلاحات لازم را در ارائه با کیفیت آب به دنبال رسانده.

واژگان کلیدی: مدلسازی کیفی، شناخت کیفی آب، تغذیه گرایی، رودخانه اطرک

1- دانشجوی دکترای محیط زیست و کارشنازی؛ پژوهشکده مطالعات و تحقیقات منابع آب، مؤسسه تحقیقات آب و زارتر نیرو، تهران
2- دانش‌آموز کارشناسی ارشد مهندسی زیست‌سوز، کارشنازی؛ پژوهشکده مطالعات و تحقیقات منابع آب، مؤسسه تحقیقات آب و زارتر نیرو، تهران
3- دانش‌آموز کارشناسی ارشد محیط زیست، کارشنازی؛ مهندسین مهاره‌های چاپ، تهران
4- دکترای محیط زیست، عضو هیات علمی و معاون مؤسسه تحقیقات آب و زارتر نیرو، تهران
آرایه چارچوبی منابع جهت بررسی وضعیت

مقدمه

امروزه لزوم مطالعات کیفی متنابع آب با توجه به ورود آلیه‌های منعکس‌نگار گرمایشگری، امری که باید با توجه به ورود اعتقادات و ایده‌های اخیر در افکار دنیای بوده است (1). طی هدف‌های اخیر راه کارهای متعددی در محیط مختلف شاملیکی، پیشگیری و اقدامات اصلی جهت افزایش کیفیت متنابع آب توسط محققین مختلف امروزه و گذشته شده است (2). در این مقاله مرحله شناسایی و اطلاع از وضعیت کیفی متنابع آب به عنوان اولین گام در جهت دستیابی به محیط آبی سالم و استاندارد، به‌عنوان از مطالعات را به خوبی اختصاص داده و در صورت توجه کافی می‌توانند به عنوان یکی از منابع برای پیشگیری و اقدامات اصلی جهت افزایش کیفیت متنابع آب محض محسوب شود. شناسایی دقیق کیفیت و وضعیت منابع آب به عنوان مناسب جهت بررسی تغییرات محیطی و زمین‌شناسی آلیه‌ها، از مهم‌ترین ظروفیه‌های مرجعی برای شناسایی متنابع کیفی متنابع آب است. این مقاله به‌عنوان یکی از مهم‌ترین منابع تأمین آب تشرب کشاورزی و صنعت، جمله برای این که همواره توجه بشر بوده، بستر مناسبی نیز جهت ادامه حیات بسیاری از موجودات زنده آبی و غیرآبی شامل حیوانات و گیاهان را به وجود آورده‌اند. این منابع آب به دلیل جریان دائمی در مناطق مختلف، با کاربری متفاوت و پوشش بیشتر مراکز جمعیتی در اطراف خود ازاقتصاد زیادی جهت آب‌های شبه‌کشوری و در صورت ورود به‌دلیل خطر ها از محیط برخورداری از چنین ایجاد شده جنگلی، کاهش اکسیژن محلول آب، مرگ ومیر ماهیان و کاهش موجودات بستری و سایر آب‌زایان در این می‌سری‌ها می‌شود (3). این مقاله در چنین این موضوع به‌دلیل توجه مطالعات متعددی منابع آب بر به‌سیاپ می‌کنند (4) از این نسل توجه سیستم، علی‌البته می‌توانیم در این آب‌زایان برای توجه کافی نداشتن به تاکیدپذیری کافی آب از کمیت
مواد و روش‌ها

شاخص کیفیت آب WQI

شاخص WQI مقیاسی بین 1 تا 100 برابر درجه بندی کیفیت آب دارد. در این دستگاه 100 بیشترین امتیاز را دارد. هنگامی که شاخص نهایی کیفیت آب محاسبه شده باشد، با درجه‌بندی ارائه شده در جدول 1 مقایسه و تعیین می‌گردد که آب در یک روز مشخص تا چه اندازه بهداشتی بوده است. در این تحقیق جهت محاسبه WQI از نرم‌افزار تخصصی موجود ایستفاده گردیده است (13).

فاکتور تروفیکی

به منظور بررسی وضعیت تروفیکی منابع آب‌های مختلف ناکوند مورد استفاده قرار گرفته بودند. ماتریس TN و FSF(کل (TP) و فسفر کل (FN)) مواد مغذی خصوصاً نیتروژن کل و فسفر کل.
کل جریان رودخانه است، انتفاہا گردیده است (معادله ۱).

\[C = \beta Q^a \]

(۱)

\[\text{آب‌شیرین مانند دریاچه‌ها، مخازن و رودخانه‌ها مطرح بوده} \] (۱۷) در حالی که بی‌طرفی نهایی نشان را برای آکوسیستم‌های دریاپی دراز (۱۸) به‌طور چشم‌گیری باشد. به‌طور چشم‌گیری با این نکته نیز اشاره نمود که این نتایج همیشه و برای تمامی آکوسیستم‌های آب‌شیرین یا دریاپی صادقی است و می‌تواند استنادهای زیادی نیز داشته (۱۸) با توجه به مطالعه‌های بسیاری از این چهت این‌ها در واقعیت‌روند رودخانه از مقادیر TP ثبت شده و سپس با استفاده از مدل تروریکی داده و همکاران (۸) که در جدول ۲ آرایه‌شده است، واقعیت‌روندیکی بازه‌های مختلف رودخانه‌ها تغییر شده است.

جدول ۲: سیستم پیشنهادی طبقه‌بندی و وضعیت ترولی رودخانه‌ها توسط داده و همکاران (۸)

<table>
<thead>
<tr>
<th>وضعیت ترولی رودخانه</th>
<th>غلظت محلول کلوئید</th>
<th>غلظت نیتروژنکل</th>
</tr>
</thead>
<tbody>
<tr>
<td>خوب</td>
<td>۰-۲۰</td>
<td>۱-۲۰۰۰</td>
</tr>
<tr>
<td>متوسط</td>
<td>۲۰-۷۰</td>
<td>۲۵۰۰-۱۵۰۰</td>
</tr>
<tr>
<td>ضعیف</td>
<td>۷۱-۷۵</td>
<td>۱۵۰۰</td>
</tr>
</tbody>
</table>

* تمامی واحدها بر حسب میلی گرم بر مترمکعب است.

\[\text{بینتیجه} \]

بررسی وضعیت کیفی رودخانه از این مدل\(WQI \) در این تحقیق برای محاسبه از اطلاعات مطالعات دفکت‌های آب دشته‌های خراسان شمالی (۱۰) و آزمایش مطالعات دفکت‌های محتوی آب کنترل کیفی آب رودخانه از (۲) استفاده گردید. شکل‌های ۲ و ۴ نتایج به دست آمده WQI برای هر ایستگاه را نشان می‌دهند. WQI باید هر ایستگاه را نشان دهد. WQI باید هر ایستگاه را به‌طور صحیح و دقیق واقع در محدوده استان خراسان رضوی و شمالی (۲۵) ایستگاه

\[\text{شکل ۲: نمودار لگاریتم غلظت TDS بر حسب لگاریتم جریان} \]

\[\text{مدل اکثر} \]

به دلیل وجود تعداد سیستم‌های آب‌شیرین و کم‌کو بودن اطلاعات کیفی آب‌شیرین رودخانه از این مدل لگاریتمی توصیه شده توسط اکثر (۹) که دارای TDS ساختاری بسیار ساده بوده و هدف از آن است انتخاب میزان متوسط رودخانه‌ها موجود در موقعیت‌های جریان‌پایه و روان‌های سطحی، حوضه‌ای از...

\[\text{فناوری انرژی برق‌شناسی} \]

\[\text{انرژی بهداشت محلی ایران} \]

\[\text{یکی از اولین و مهم‌ترین مراحل در تغییرات محیطی ایران} \]

\[\text{کنترل از آب‌شیرین برای بهره‌برداری از آب} \]

\[\text{فناوری انرژی برق‌شناسی} \]

\[\text{انرژی بهداشت محلی ایران} \]

\[\text{یکی از اولین و مهم‌ترین مراحل در تغییرات محیطی ایران} \]
این وضعیت برای فصل زمستان نتایج گرفته شده است و در این فصل (6 ایستگاه) در دسته بندی خوب قرار دارد.

بررسی و ضعیت کیفی رویکرد به متغیر فاکتور ترولجی

برای تغییر وضعیت تغییرات در آبادانی و تغییرات در تغییرات در اطلاعات موجود، از اطلاعات در شبیه سفره در ایستگاه متفکر قرار گرفته در شاخه اصلی و سرشارهای ایستگاه در این موثر انسان اطلاعات جغرافیایی مبتنی بر این ایستگاه‌ها بوده است و این میزان انسان اطلاعات جغرافیایی مبتنی بر این ایستگاه‌ها بوده است. و به این ترتیب، میزان دلایل تغییرات در تغییرات در رودخانه‌ها بر مبنای پارامتر سفر کل در طول پایدارهای مختلف به دست آمده. شکل 5 موردی و ضعیت تغییرات درآمده در ایستگاه این اثر بر پایداری متفکر کل در باره‌های مختلف رودخانه است. از شکل 5 موردی است که اثر باره‌های متفکر اثر در وضعیت مغذی قرار دارد.

بوده و شکل 4 بیان برای استان WQI برای ایستگاه‌های واقع در استان کلستان در حوزه ارته ارته زمان می‌دهد. از شکل 3 مشخص است که ایستگاه شماره 12 از WQI وضعیت مطلوب بهترین دیجیتال بنیان‌های در دسته آب با کیفیت نسبتاً ضعیف قرار می‌گیرد. از طرفی نیز ایستگاه از 29 ایستگاه دارای وضعیت کیفی خوب بوده و قیمت ایستگاه‌ها در دسته متوسط قرار دارند. در مورد 10 ایستگاه واقع در محدوده کلستان اطلاعات کامل ثبت در دسترس بوده و این امکان را فراهم نمود با شاخص WQI برای هر ایستگاه در سه فصل مورد بررسی قرار گیرد. مطابق نتایج به دست آمده مشخص است که وضعیت کیفی ایستگاه‌های مبتنی به شکل 6 در فصل بهار از دو فصل دیگر انرژی زمستان و تابستان بدت است. در فصل بهار مشاهده می‌شود که تمامی 10 ایستگاه مورد بررسی در طبقه‌بندی متوسط قرار گرفته‌اند.

![شکل 3: مقدار محاسبه شده WQI برای ایستگاه‌های واقع در محدوده خراسان رضوی و شمالی](image-url)
همچنین ذکر این بانک نیز لازم است که با توجه به فاوت‌های فراوان در رفتار رودخانه‌ها قرار گرفته در وضعیت مختلف جغرافیایی، ناشی از این روش‌های مختلف وًشیانی، زمین‌شناسی، دمای و غیره، تجویز روش بیشتری داده و همکاران (8) که بر بینای اطلاعاتی به دست آمده از رودخانه‌های وضع در وضعیت مختلف تغذیه گرایی رودخانه‌ها از این بر روی داده و همکاران (8) مشااهده که اثر بهتری رودخانه مذکور در وضعیت غذایی قرار داشته که این‌ها با توجه به بازده‌های مبتپ‌می از رودخانه اثر ذکر در دسته‌بندی مورد ثبت‌شده‌ها از دستگاه‌های غذایی در رودخانه‌های مختلف با توجه به شرایط معیطی خاص دوری است.

پیشینی غلظت آب‌ندی بر بیان دی می‌تواند در این تحقیق چه جهت مدل‌سازی کردن، پارامتر TDS به دلیل اهمیت بالای آن در مطالعات کیفی میانگین آب انتخاب شده. اطلاعات لازم برای فراشبند مذکور شامل سری زمانی TDS و رودخانه، تبدیل شده در استنتاج های مخفی است. TDS برای این منظور از اطلاعات 3 استنتاج به نام هایی SW (ترک گرفته در ابتدا طول رودخانه اثر تا 23، 24 و قرارگیری 3 ST23 این دو استنتاج بر روی اثر TDS و قرارگیری 3 ST23

نوری در این موضوع تأثیر زیادی بر رفتار هیدرودینامیک رودخانه که به عنوان یکی از پارامترهای مهم تأثیرگذار بر شکل‌برداری و رودخانه‌ها معرفی شده است (3)، داشته باشد.
به ازای جریان یا در ایستگاه های مذکور نیز به ترتیب TDS معادل 86/1.1329 و 2498 میلی گرم بر لتر است. با مقدار EC شش مخصوص می شود که به اضافه شدن TDS جریان سطحی به جریان یا به منجر می شود که بعدهای TDS و به تبع آن جریان کاسته می شود. به عبارت دیگر می توان بیان نمود که سهم کمتری از TDS و رودخانه اترک در چهار ایستگاه مناسب در این تحقیق ناشی از تغییرات های انسان ساخت طبیعی مانند بازسازی زمین، شناسی وضعیت انسان ساخت مانند تغییرات زمین شناسی جوزه در سه بودن مقادیر TDS و EC ایستگاه های انسانی است) بوده و تأثیر منابع طبیعی مانند از TDS و EC ایستگاه های انسانی است) بوده و تأثیر منابع طبیعی شریک است. مشخص است که افزایش دیده به بسته از دیپ یا در هر یک از جهات ایستگاه مذکور با کاهش غلظت کل جامدات محلول و هدايت الکتریکی آب همراه بوده است. روند مذکور در حالت کلی قابل قبول بوده زیرا در دیپ های کم در محدوده ایستگاه خراسان شمالي قرار دارند) و در نهایت ایستگاه داشنی برون با ST30 بر روی رودخانه اترک واقع در ایستگاه خراسان استفاده گردید. چهار ایستگاه مذکور به عنوان نماینده های مناسب به توجه به بویشک مکانی قابل قبول یک سازه رودخانه اترک جهت نمایش تغییرات کیفی پارامتر است. قابل ذکر است که در این مدل سازی نسبت به صحبت نتایج برداشت شده نیز اقدام گردید. برای این منظور مطابق با TDS و EC مراجع معین (25) باید رابطهای خصوصی بین TDS ردیابی شده و انجام گرفته این موضوع را ناپایدار نمود. در نهایت نیز مدلسازی دبی جریان انجام گرفت که نتایج آن به تفکیک ایستگاه در شکل های 9-6 نشان داده شده است. با توجه به شکل های 6-9 و با استفاده از روند سعی و خطای موقعی در پایه ایستگاه های هی پاژیلادقی، داشنیبرون به ترتیب معادل 0.5/22 و 0.73/22 متر مکعب بر ثانیه محاسبه گردید. مقادیر

شکل 2: تغییرات وضعیت تروی در طول رودخانه اترک بر پایه فشار کل

دانشگاه علوم پزشکی امام علی (ع) بهداشت و بهداشتی ایران
ارایه چارچوبی مناسب چهت بررسی وضعیت رودخانه

روند دوم به دلیل کاهش جریان و معمولاً غلتک مواد محلول و کانی‌ها و آنیون‌های آب بروی اصلی TDS و EC هستند افزایش می‌باید. علاوه بر این با مقایسه مطالعات مشابه

(9) نیز مشخص می‌شود که اگرچه رود کاهش غلتک کل جامدات محلول و هداهنده الکتریکی نسبت به افزایش دیب در برخی استانه‌ها اند است و با شیب کم صورت می‌گیرد ولی به‌هرحال روند کاهش مشاهده شده در مطالعات مذکور در این تحقیق نیز مشاهده می‌شود.

نتیجه‌گیری

اطلاعات دقیق و کافی در زمینه کیفیت منابع آب اساس مطالعات کمی و کیفی سیستم‌های مذکور جهت اتخاذ تصمیمات لازم و مناسب برای مدیریت صحیح در ارتقاء با تخصیص و تعیین کاربری‌های مختلف آب است. ارایه گزارش مناسب جهت اطلاع از وضعیت کیفی رودخانه ارک که از اطلاعات محاسبه‌ی و اندکی خصوصی در زمینه کیفیت آب برخوردار است. هدف اصلی مقاله مذکور قرار داده شد. برای این منظور با توجه به اطلاعات اندک در دسترس و با توجه به مشکل شوری و نگهداری گرانی در اثر منابع آب کشور، روندی مناسب جهت تعیین وضعیت کیفی رودخانه و ارایه مدل‌های مناسب جهت اطلاع از وضعیت کیفی بازه‌های مختلف این رودخانه ارایه گردید. نتایج به دست آمده از این تحقیق را می‌توان در قالب نتایج زیر خلاصه‌ی می‌نمود:

1- نتایج مدل QWQ مشخص می‌نمود که از بین 29 استانه

منتخب رودخانه ارک در محدوده استان خراسان شمالی 1 ایستگاه آن در دسته آب با کیفیت نسبتاً ضعیف و ایستگاه
روخ اله نوری و همکاران

شکل ۷: ترکیب ترکیبی مدل جامدات محلول در بیانی دیپ در ایستگاهی رشد‌آباد

شکل ۷: ترکیب ترکیبی مدل جامدات محلول بر بیانی دیپ در ایستگاهی رشد‌آباد
2. Noori R, Karbassi AR, Mehdizadeh H, Sabahi MS. A
framework development for predicting the longitudinal dispersion coefficient in natural streams using artificial neural network. Environmental Progress & Sustainable Energy. DOI:10.1002/ep.10478.

Offering a Proper Framework to Investigate Water Quality of the Atrak River

*Noori R. 1, Jafari F. 2, Forman Asgharzadeh D. 3, Akharzadeh A. 4
1Department of Environmental Engineering, Expert of Water Research Institute, Ministry of Energy, Tehran, Iran
2Department of Geohydrology, Expert of Water Research Institute, Ministry of Energy, Tehran, Iran
3Department of Water Resources Engineering, Expert of Mahab Ghods Consulting Engineers, Tehran, Iran
4Department of Environmental Engineering, Deputy of Water Research Institute, Ministry of Energy, Tehran, Iran

Received; 2 March 2011 Accepted; 28 May 2011

ABSTRACT
Backgrounds and Objectives: The Atrak River is an important water supply resource in the Razavi Khorasan, Northern Khorasan and Golestan provinces. This river is the line border of Iran and Turkistan countries. Unfortunately, lack of water quality and quantity data due to nonexistence of a proper surface water quality monitoring station network is one of the main problems for water quality evaluation in the Atrak River. The main objective of the research is to offer a proper framework for surface water quality evaluation regarding to the mentioned limitations.

Materials and Method: In the first step, proper surface water quality monitoring stations along Atrak River are selected and water quality conditions are indicated using water quality index (WQI) model. The second step is allocated for determining trophic states of the river. Finally, the river water quality modeling is carried out for one of the most important index of water quality in the Atrak River i.e. total dissolved solids (TDS) based on proposed method by Oconnor (1976).

Result: Results of WQI model showed that most of the stations were in the moderate class. The result also showed that most parts of this river had trophic condition. Finally, based on findings of O’Conor model it is demonstrated that the salinity status observed in these four stations originated from the base flow and therefore, salinity is affected by the natural sources.

Conclusion: This methodology in the research can be used in rivers which don’t have the proper surface water quality monitoring stations and therefore encountered with lack of water quality data. It can provide the proper strategy and management tasks to reach the good water quality conditions.

Keywords: Water Quality Modeling, Water Quality Index, Eutrophication, Atrak River

*Corresponding Author: roohollahnoori@gmail.com
Tel: +98 0937 4320526 Fax: +98 21 77311959