بررسی آهنگ دور گامای محیطی در شهرهای اردبیل و سرعین در سال 1387

صداق حضروتی، منوبه پرکاک، مرتضی عالیقندی

نویسندگان: اردبیل، خیابان دانشگاه، دانشگاه علوم پزشکی اردبیل، دانشکده بهداشت

دریافت: 1390/12/30
پذیرش: 1390/12/30

چکیده
زمین و هدف: پردازش گامای محیطی یکی از زمینه‌های پویا و متنوع در عرصه بهداشتی می‌باشد. پرتوکیری خارجی به واسطه گامای محیطی حاصل از مراتب انسانی، به مراتب دیگر انسانی محسوس می‌شود. در این مطالعه به تعداد آهنگ دور گامای محیطی در سال‌های حاضر مورد بررسی قرار گرفت. محیط بیرونی و فضای آزاد شهرهای اردبیل و سرعین در 25 ایستگاه مورد بررسی قرار گرفت. در این ایستگاه‌ها به آمارهای مشخص از شباهت شهری، فضای عمومی شهری و انتخابات شهری با بستر زمین ارائه شد.

روش بررسی: با استفاده از یک آشکارساز اندازه‌گیری پوپیوماسیون، آهنگ دور گامای محیطی در محدوده طبیعی و فضای آزاد شهرهای اردبیل و سرعین در 25 ایستگاه مورد بررسی قرار گرفت. در این ایستگاه‌ها به آمارهای مشخص از شباهت شهری، فضای عمومی شهری و انتخابات شهری با بستر زمین ارائه شد.

پایانه: موانع کننده آهنگ دور گامای محیطی شهرهای اردبیل و سرعین در محیط بیرونی و فضای آزاد شهرهای اردبیل و سرعین به ترتیب به تعداد 845 ناموسور و 219 ناموسور است. در این مطالعه به تعداد 200 ناموسور در ساختار و نوشتار شهرهای اردبیل و سرعین به ترتیب به تعداد 1/4 و 1/3 ناموسور برآورد گردید.

نتایج گیری: با توجه به حداقل آهنگ دور گامای محیطی و دوز موتور سالانه در فاصله ساکن شهرهای اردبیل و سرعین بیش از 8.5٪ می‌باشد. به ترتیب به تعداد 845 ناموسور و 219 ناموسور در این مطالعه صورت گرفت و غلظت رادینوپلویدهای موجود در خاک منطقه بررسی شد.

واژگان کلیدی: گامای بافتی، دوز موتور، پرتوکیری نوین، اردبیل

1- دکتر کیا بهشتی حرفه ای، استادیار دانشکده بهداشت، دانشگاه علوم پزشکی اردبیل
2- فوق تخصص کودکان، دانشیار دانشکده پزشکی، دانشگاه علوم پزشکی اردبیل
3- دکتر کیا بهشتی حرفه ای، استادیار دانشکده بهداشت، دانشگاه علوم پزشکی اردبیل
زمین شناسی منطقه متفاوت بوده و به غلظت عناصر رادیواکتور

بی‌توجهی به این که اشعه گاما، هوا تا انرژی لازم جهت

ویان سازی در مواد جاذب (از جمله بدن انسان) هستند. در

دست هم‌بیندی پرتوها جرو پرتوهای بیولوژیکا قرار می‌گیرد (1).

عوارض محبت ناشی از پرتوهای بیولوژیکا از دیارشان نشده است. عمده اثرات زیان بار آنها به خطر بیولوژیکا

مولکول های مشخص مورد در هوله بدن است. پیاده

در تعدادی کشور سیستم ها نسبت به دوزهای دردسر

شده. علاوه بر فاکتورهای بیولوژیکا ظرفیت نظارت، سن، جنس،

اندام تحت اشعه و مکانیسم‌های پاسخ‌زا صدمات ناشی از

پرتوهای فاکتورهای متعدد دیگری نظر شد، پرتو انرژی

و نوع پرتو و انرژی تغییر زمانی پرتو نیز دخالت دارد.

مهم‌ترین مولکول DNA (Deoxyribonucleic Acid)

سئول است که هواسته اثر مستقیم و غیرمستقیم پرتوهای

پرتوهای مجز معمول در قلل سرطان. عوارض

زیستی و همچنین عوارض ترانزیست نظر می‌گردد.

مردم عادی با واسطه وجود رادیو نوکلییدهای مشترک کننده

پرتوهای مهم ساز در پوشه زمین (پرتوهای زمین) و متعاقب آن

در تکنیک‌های ساختاری مبانی باید توجه نوروزهای ناشی از آزمایشات انسنی و همچنین پرتوهای کهکشان (عندتا

گاما) به طور مستمر در معرض شدت های مختلفی از پرتوهای

پرتوهای گاما که مستقیماً و غیرمستقیماً دو فرورسایه‌ای هوابرد

ساختار ها در شش تابعه به دو صورت از دو دوز

GA40 که مولت سورد اندوراکور پرتوگرفت. مانگنیوم زمین

در داخل ساختارها ها 123±8/8 و در فضای آزاد معدل

10/4±6/1 نانو سیورت در نانو مکسیمیر

در میان مدون مولت سیورت (ب) 10/4±6/1 و میان مدون مولت سیورت (ب) 10/4±6/1

روز/1000 کیلوگرم. افزایش دمای انرژی کهکشان به

ساختار را در پرتوهای خارجی. انسان افراز می‌نماید (3).

پرتوهای کهکشان در حساسیت به حساسیت‌های جغرافیایی منطقه

فناوتایی و به افزایش ارتفاع از سطح دریا و افزایش عرض

جغرافیایی (از استوا به قطب) شدت ان نیز بیشتر می‌گردد

(1 و 3). شدت گاما حاصل از معادن زمینی به‌جای ساختار

342
در استان اردبیل (۱/۵)، این مطالعه به هدف تعیین آنگر درصد های مختلف گل‌ریزی در زمینه ادبیات و منابع سنجشی شرایط زیستی گیاهان و محیط زیست ارتباط دارد. به منظور بررسی و مقایسه این موضوع، در ۱۰۰ نقطه مختلف از زمینه‌های مختلف استان اردبیل، نمونه‌برداری شد. نتایج نشان داد که به‌طور کلی، درصد گل‌ریزی در این مناطق به حدود ۲۵ درصد می‌رسد و این موضوع به‌طور گسترده‌ای در مناطق مختلف استان اردبیل دیده می‌شود.

مواد و روش‌ها

تعیین اندازه‌گیری اندازه‌گیری در این مطالعه مطابق با منابع اخلاقی کتاب‌های ادبیات و منابع سنجشی شرایط زیستی گیاهان و محیط زیست است. در این اثر، برای تعیین اندازه‌گیری، نمونه‌برداری شد. نتایج نشان‌داد که درصد گل‌ریزی در این مناطق به حدود ۲۵ درصد می‌رسد و این موضوع به‌طور گسترده‌ای در مناطق مختلف استان اردبیل دیده می‌شود.

ارگوس

در فصول مختلف ۲۰۰۲–۲۰۱۱ در سه‌ماهه‌های مختلف گل‌ریزی در زمینه ادبیات و منابع سنجشی شرایط زیستی گیاهان و محیط زیست ارتباط دارد. به منظور بررسی و مقایسه این موضوع، در ۱۰۰ نقطه مختلف از زمینه‌های مختلف استان اردبیل، نمونه‌برداری شد. نتایج نشان داد که به‌طور کلی، درصد گل‌ریزی در این مناطق به حدود ۲۵ درصد می‌رسد و این موضوع به‌طور گسترده‌ای در مناطق مختلف استان اردبیل دیده می‌شود.

شابک

۱۰۰ سانتی‌متری سطح زمین مورد انتخاب گیری قرار گرفت. در روش‌های گیاهی اکثریت محققین نمایش حاوی مواد راه‌پایگانی و مورد بررسی می‌شود و در این مطالعه نیز این موضوع به‌طور مناسب در روش‌های گیاهی اکثریت محققین نمایش حاوی مواد راه‌پایگانی و مورد بررسی می‌شود. در این مطالعه نیز این موضوع به‌طور مناسب در روش‌های گیاهی اکثریت محققین نمایش حاوی مواد راه‌پایگانی و مورد بررسی می‌شود.
مدت یک ساعت ادامه یافت. نتایج انداده‌‌گری در پایان هر ۲ دقیقه خوانش و در فرم‌های مربوط گردیده. متوسط این هر دوز معادل در هر ایستگاه از میانگین نتایج لیت شده برآورد و اطلاعات به دست آمده پس از طبقه بنیاد، حسب مورد توسط Excel و SPSS با استفاده از آزمون‌های آماری مناسب مورد تجزیه و تحلیل قرار گرفت.

دستگاه، علاوه بر کالیبراسیون کارخانه‌های سازنده، دوزبرنر مکرو-fl مزکر قبل از شروع انداده‌‌گری، توزین یک شرکت مورد نیاز سازمان برای انجام این فرآیند و با استفاده از منبع رادیو اکتیو سری ۱۲۷ کالیبره‌گر دیده. جهت انجام عملیات دوزیمتری، دستگاه بر روی پایه پیچبای ارتفاع قابل تنظیم قرار داده شد. انداده‌‌گری به همراه دوز معادل گامای محیطی در شش ماهه اول سال ۱۳۸۷ انجام گرفت و عمل انداده‌‌گری در هر ایستگاه به

شکل ۱: ایستگاه‌های انداده‌‌گری در شهر اردبیل

شکل ۲: مسیر فاضلاب آب‌های گرم
منحوه محاسبه دوز موثر سالانه دریافتی حاصل از گامای محیطی

از نظر عدید مقادیر دوز جذبی گامای محیطی (بر حساب
گری) برای با دوز معادل (بر حساب سیورت) است. لکن
ارتباط بیولوژیکی بروز در انسان بر مبنای دوز موثر از گربه
می‌گردد. برخی از مؤثر سالانه ناشی از گامای محیطی داخل
ساخته‌مان ها و محیط بیرون با استفاده از فرمول ذیل برای
ساکنین شهرهای اردل و سرعین محاسبه گردید.

\[HE_T = HE_{In} + HE_{Out} \]

\[HE_{In} = T \cdot °D_{In} \cdot C_C \cdot OF_{In} \cdot 10^{-6} \]

\[HE_{Out} = T \cdot °D_{Out} \cdot C_C \cdot OF_{Out} \cdot 10^{-6} \]

توز موتر سالانه ناشی از ساخته‌مان‌ها بر حسب

به مفهوم محاسبه دوز موثر سالانه ساکنین شهرهای اردل
و سرعین، آنها دوز گامای محیطی گزارش شده محاسبه توسط
بحثی و همکاران (19) برای محیط های داخل و داده‌های
ارائه شده در جدول 1 برای شهرهای اردل و سرعین مورد
استفاده قرار گرفت و نتایج حاصل از آن در جدول 2 ارائه شده
است. بر اساس محاسبات انجام گرفته دوز موثر ناشی از اشعه
گامای محیطی برای ساکنین شهرهای اردل و سرعین شهر
سالانه مردم سیورت در سال برآورد گردید.

جدول 1: آنگاه دوز معادل گامای محیطی (میکروسورت در ساعت) در مکان‌های مورد نظر

<table>
<thead>
<tr>
<th>میکروسورت در ساعت</th>
<th>سرعین</th>
<th>اردل</th>
<th>آم گرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>cm</td>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>میانگین</td>
<td>انحراف معیار</td>
<td>مداکل</td>
<td>میانه</td>
</tr>
<tr>
<td>0/29</td>
<td>0/21</td>
<td>0/23</td>
<td>0/24</td>
</tr>
<tr>
<td>0/30</td>
<td>0/9</td>
<td>0/10</td>
<td>0/11</td>
</tr>
<tr>
<td>0/31</td>
<td>0/26</td>
<td>0/27</td>
<td>0/28</td>
</tr>
<tr>
<td>0/34</td>
<td>0/35</td>
<td>0/36</td>
<td>0/37</td>
</tr>
<tr>
<td>0/43</td>
<td>0/44</td>
<td>0/45</td>
<td>0/46</td>
</tr>
<tr>
<td>0/52</td>
<td>0/53</td>
<td>0/54</td>
<td>0/55</td>
</tr>
</tbody>
</table>
بحث

آهنگ دور مطالع در فضای بیرون متوسط آهنگ دور مطالع گامای محیطی (میانگین اندازه گیری در ارتفاع 24 و 100 سانتی‌متر) در فضای بیرون شرایط ارتفاع میانگین در ارتفاع 116 ± 245 و سرین مطالع 24 ± 19 نمونه‌برداری در ساخت اندازه‌گیری شده. آهنگ دور مطالع اندازه گیری شده در این مطالعه از نتایج گزارش شده از مناطق مختلف ایران ازجمله شهرهای تبریز، ارومیه، سنندج، زنجان، اصفهان، یزد، مشهد، کرمان و بیشتر است. (3).

(13) بنابراین آهنگ دور مطالعی در این مطالعه مکمل است مربوط به ساختار زمین شناسی منطقه از جمله باتی‌کوهستانی و ارتفاع زیادی آن از سطح دریا باتی. پرتوهای کهنه و زمین: آزمون‌های نی نی استوئنت نشان داد که اختلاف معنی‌داری بین آهنگ پرتوهایی در ارتفاع ۲۰ و ۱۰۰ سانتی‌متر متغیر و وجود نداشته با تأثیرات انجام گرفته در داخل ساختارمان ها در شهرهای اردين و سرین هم خویند. (14). لذا چنین رو به نظر می‌رسد که توزیع مکانی راویوند کلیه‌های منشترکننده گاما در زمین و انمسرف به هر گونه ای است که آهنگ دور مطالع پرتو را در ارتفاع‌های مختلف به بیشتر مخاطبر می‌نماید. به عبارت دیگر که شهرهای کهنه که در ارتفاع بازی ۲۰ سانتی‌متر) با فاوتی گامای منشتر شده از زمین خشک می‌گردد. برای بودن آهنگ دور مطالع گامای محیطی در ارتفاع ۲۰ و ۱۰۰ سانتی‌متر در منطقه فاصله‌ای قابلیت یافته‌های آب گرم سرین است. (16)

(21) میکروسپورتر در مطالعه نیز مورد این ارمان است.

توپی‌های لازم که در مجاورت منسی فلسفه‌های گونه‌ای ساختارمان (حداقل ۳۱۰ سانتی‌متر) که بتواند در نتایج اندازه‌گیری داخل نماید، وجود نداشته و باید طبیعی منطقه تیز نمایندگی نهایی اندازه‌گیری تمامی فیلمن‌ها به روش‌های گونه‌ای ساختارمن (شکل ۳). کمیته علمی عوارض پرتوهای یون‌ساز

جدول ۲: چهار و دوز مطالعه و دوز مطالعه به تفکیک اندازه‌گیری‌ها و محیط بیرون

<table>
<thead>
<tr>
<th>دوز مطالعه کل</th>
<th>دوز مطالعه در هوا</th>
<th>(نمونه‌برداری)</th>
</tr>
</thead>
<tbody>
<tr>
<td>داخل ساختارمان</td>
<td>۱۴۹</td>
<td>۲۳۸</td>
</tr>
<tr>
<td>محیط بیرون</td>
<td>۳۴۵</td>
<td>۱۰۸</td>
</tr>
<tr>
<td>سرین</td>
<td>۲۴۱</td>
<td>۳۱۹</td>
</tr>
</tbody>
</table>

۳۴۶
پوشیده از جمل است.

بررسی هایی که در کنار او انجام گرفته (19)، آهنگ دوز معادل کامی محیطی، اندازه گیری شده در استادان های مختلف تغییرات قابل ملاحظه ای را نشان داد و لیکن آهنگ نامحسوسی گزارش شده در فضای آزاد در این مطالعه با مقایسه گزارش شده برای داخل ساخته ها، همان شاهد به نسبت معادل کامی محیطی داخل ساخته ها با محیط بیرونی در شهر اردبیل 9/8 و در شهر سرعین معادل 1/9 نسبت گردید. بدیهی است وجود مقایسه زیاد مواد رادیاکتوپنی در مصالح ساخته ها و خاک محل بنای ساخته ها و همچنین تجربه کاراهی رادون و ثورون در داخل ساخته ها، این نسبت را به مواد بیشتری می نماید.

از باور کننده موثری می توان به میزان تهویه ساخته ها اشاره نمود که معمولا در فصول گرم به مواد بیشتری بوده و این امر موجب کاهش غلظت مواد رادیاکتوپنی در هوا در داخل ساخته ها می شود (4). در تحقیقاتی که طی آن آهنگ دوز برتو کاما در داخل ساخته ها و محیط بیرون اندامه قطع شده است، نتایج مشابه به دست آمده است و بنابراین مثل این نسبت

برای شهرهای تبریز و آرومی معادل 1/12، 1/13 و 1/24 کردستان و کرمان معادل 1/3 گزارش شده است (17021). همچنین

شکل 3: نمودار مقایسه ای آهنگ دوز (نانو سبکت در ساعت) گزارش شده از ایران و جهان (3، 8، 9، 10، 12، 13، 16، 17، 18، 20، 21).
نتیجه‌گیری

اندازه‌گیری شدت گامای محیطی نشان داد که آگهی دوز گامای محیطی در شهرهای اردبیل و سرعین از اغلب مناطق مطالعه شده در ایران و جهان بیشتر است. علت مهم اینکه استاندارد خاصی برای میزان پرتوهای طبیعی تدوین نشده است و لی این مناطق را می‌توان جزو مناطق با پرتوهای

منابع

22. Sohrabi M, Ahmed JU, Durrani SA. High levels of natural radiation. Proceeding of the 3rd International Conference on High levels of Natural Radiation; 1990; Ramsar, Iran.
Assessment of Environmental Gamma Radiation Dose Rate in Ardabil and Sarein in 2009

Hazrati S.1, Barak M.2, *Alighadri M.3
1Department of Occupational Engineering, Health School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
2Department Children, Faculty of Medical, Ardabil University of Medical Sciences, Ardabil, Iran
3Department of Environmental Health Engineering, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran

Received; 31 May 2011 Accepted; 30 August 2011

ABSTRACT

Background and Objectives: Gamma rays, the most energetic photons within the any other wave in the electromagnetic spectrum, pose enough energy to form charged particles and adversely affect human health. Provided that the external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined, environmental gamma dose rate and corresponding annual effective dose were determined in the cities of Ardabil and Sar Ein.

Materials and Methods: Outdoor environmental gamma dose rates were measured using an Ion Chamber Survey Meter in 48 selected locations (one in city center and the remaining in cardinal and ordinal directions) in Ardabil and Sar Ein. Ten more locations were monitored along the hot springs effluent in Sar Ein. Measurements of gamma radiation dose rate were performed at 20 and 100 cm above the ground for a period of one hour.

Results: Average outdoor environmental gamma dose rate were determined as 265, 219, and 208 nSv h⁻¹ for Ardabil, Sar Ein, and along the hot spring effluent, respectively. The annual affective dose for Ardabil and Sar Ein residents were estimated to be 1.45 and 1.39 mSv, respectively.

Conclusion: Calculated annual effective dose of 1.49 and 1.35 nSv are appreciably higher than the population weighted average exposure to environmental gamma radiation worldwide and that analysis of soil content to different radionuclide is suggested.

Key words: Gamma radiation, Effective dose, Ionizing radiation, Ardabil province

*Corresponding Author: M.Alighadri@arums.ac.ir
Tel:+98 451 550052 Fax:+98 451 77 21 750