پژوهشگر

چکیده

پرکلرواتیلن یک هیدروکربن کلرینه است که به عنوان حلال دارای مصارف متعددی است. لذا این مطالعه با هدف مطالعه تاثیر اکولوژیکی و سمیت پرکلرواتیلن قبل و بعد از اکسیداسیون پیشرفته شده جهت حذف پرکلرواتیلن، (فراوند، اولتراسونیک، تابش فرابنفش و گرگان، ایران) انجام گرفت. برای این منظور، پرکلرواتین را مورد بررسی قرار دادند. در این مطالعه، کاهش سمیت پرکلرواتیلن و محصولات حاصل از تجزیه پرکلرواتیلن در فراوند اکسیداسیون پیشرفته و محصولات بینابینی جدا شده از پرکلرواتیلن، اولتراسونیک و فتوسونیک، تابش فرابنفش و پراکسید هیدروژن به کارگرفته شد. نتایج نشان داد که کاهش سمیت پرکلرواتیلن بعد از انجام فراوند اکسیداسیون به تنها باید واقعاً در نظر گرفته شود. البته در بررسی تأثیر اکسیداسیون پیشرفته بر دفع سمیت پرکلرواتیلن نیز باید تأکید کرد که کاهش سمیت پرکلرواتیلن، به طورهای مختلفی اتفاق می‌افتد.
مقدمه
در حال حاضر با توجه به گسترش روزافزون صنایع پتروشیمی به ویژه بر پایه مواد شیمیایی، باید توجه کافیی به فرآیندهای ایجاد مشاهده شده است. در این مطالعه بررسی میزان سمیت پرکلرواتیلن (PCE) (فرمول شیمیایی C₂Cl₄) کربن دی کلرید یا پرکلرو ایلین، که به عنوان حلال در بسیاری از فرآیندهای خدماتی و صنعتی آن مورد استفاده قرار می‌گیرد، بررسی می‌شود. این مورد نیاز به تصفیه برخی از جمله کلرزدهای دیگر از آب و آتشفشان دارد که باید بررسی شود. پرکلرواتیلن نیز در سایر فرآیندهای پتروشیمی نیز مصرف شده است و اثرات آن بر محیط زیست مورد بررسی قرار گرفته است.

مواد و روش‌ها
الف) راکتورهای اکسیدانس شیمیایی
راکتورهای مورد استفاده در این پژوهش شامل راکتور اولتراسونیک، راکتور فرابنفش و پراکسید هیدروژن بود که با توجه به عدم وجود مطالعات جهت بررسی میزان سمیت پرکلرواتیلن و محصولات بیش از هر یک از این مواد، این نسبت کوچک را که به طور کلی در زبان جراحی توصیه می‌شود. این نسبت در این مقاله از سیستم زندگی گیاهی در آزمایشگاه‌های زیست‌شناسی استفاده گردیده است.

زیست آزمونی با دافنیا مگنا انجام شد.

بررسی میزان سمیت پرکلرواتیلن
مقدمه
در حال حاضر با توجه به گسترش روزافزون صنایع پتروشیمی به ویژه بر پایه مواد شیمیایی، باید توجه کافیی به فرآیندهای ایجاد مشاهده شده است. در این مطالعه بررسی میزان سمیت پرکلرواتیلن (PCE) (فرمول شیمیایی C₂Cl₄) کربن دی کلرید یا پرکلرو ایلین، که به عنوان حلال در بسیاری از فرآیندهای خدماتی و صنعتی آن مورد استفاده قرار می‌گیرد، بررسی می‌شود. این مورد نیاز به تصفیه برخی از جمله کلرزدهای دیگر از آب و آتشفشان دارد که باید بررسی شود. پرکلرواتیلن نیز در سایر فرآیندهای پتروشیمی نیز مصرف شده است و اثرات آن بر محیط زیست مورد بررسی قرار گرفته است.

مواد و روش‌ها
الف) راکتورهای اکسیدانس شیمیایی
راکتورهای مورد استفاده در این پژوهش شامل راکتور اولتراسونیک، راکتور فرابنفش و پراکسید هیدروژن بود که با توجه به عدم وجود مطالعات جهت بررسی میزان سمیت پرکلرواتیلن و محصولات بیش از هر یک از این مواد، این نسبت کوچک را که به طور کلی در زبان جراحی توصیه می‌شود. این نسبت در این مقاله از سیستم زندگی گیاهی در آزمایشگاه‌های زیست‌شناسی استفاده گردیده است.

زیست آزمونی با دافنیا مگنا انجام شد.

بررسی میزان سمیت پرکلرواتیلن
مقدمه
در حال حاضر با توجه به گسترش روزافزون صنایع پتروشیمی به ویژه بر پایه مواد شیمیایی، باید توجه کافیی به فرآیندهای ایجاد مشاهده شده است. در این مطالعه بررسی میزان سمیت پرکلرواتیلن (PCE) (فرمول شیمیایی C₂Cl₄) کربن دی کلرید یا پرکلرو ایلین، که به عنوان حلال در بسیاری از فرآیندهای خدماتی و صنعتی آن مورد استفاده قرار می‌گیرد، بررسی می‌شود. این مورد نیاز به تصفیه برخی از جمله کلرزدهای دیگر از آب و آتشفشان دارد که باید بررسی شود. پرکلرواتیلن نیز در سایر فرآیندهای پتروشیمی نیز مصرف شده است و اثرات آن بر محیط زیست مورد بررسی قرار گرفته است.

مواد و روش‌ها
الف) راکتورهای اکسیدانس شیمیایی
راکتورهای مورد استفاده در این پژوهش شامل راکتور اولتراسونیک، راکتور فرابنفش و پراکسید هیدروژن بود که با توجه به عدم وجود مطالعات جهت بررسی میزان سمیت پرکلرواتیلن و محصولات بیش از هر یک از این مواد، این نسبت کوچک را که به طور کلی در زبان جراحی توصیه می‌شود. این نسبت در این مقاله از سیستم زندگی گیاهی در آزمایشگاه‌های زیست‌شناسی استفاده گردیده است.

زیست آزمونی با دافنیا مگنا انجام شد.

بررسی میزان سمیت پرکلرواتیلن
مقدمه
در حال حاضر با توجه به گسترش روزافزون صنایع پتروشیمی به ویژه بر پایه مواد شیمیایی، باید توجه کافیی به فرآیندهای ایجاد مشاهده شده است. در این مطالعه بررسی میزان سمیت پرکلرواتیلن (PCE) (فرمول شیمیایی C₂Cl₄) کربن دی کلرید یا پرکلرو ایلین، که به عنوان حلال در بسیاری از فرآیندهای خدماتی و صنعتی آن مورد استفاده قرار می‌گیرد، بررسی می‌شود. این مورد نیاز به تصفیه برخی از جمله کلرزدهای دیگر از آب و آتشفشان دارد که باید بررسی شود. پرکلرواتیلن نیز در سایر فرآیندهای پتروشیمی نیز مصرف شده است و اثرات آن بر محیط زیست مورد بررسی قرار گرفته است.

مواد و روش‌ها
الف) راکتورهای اکسیdanaشیمیایی
راکتورهای مورد استفاده در این پژوهش شامل راکتور اولتراسونیک، راکتور فرابنفش و پراکسید هیدروژن بود که با توجه به عدم وجود مطالعات جهت بررسی میزان سمیت پرکلرواتیلن و محصولات بیش از هر یک از این مواد، این نسبت کوچک را که به طور کلی در زبان جراحی توصیه می‌شود. این نسبت در این مقاله از سیستم زندگی گیاهی در آزمایشگاه‌های زیست‌شناسی استفاده گردیده است.

زیست آزمونی با دافنیا مگنا انجام شد.
مجدول بندن غلظت محصولات مختلف موجود در نمونه‌ها، نمونه‌های مورد نیاز جهت آزمایش زیست آزمونی بر اساس میلی‌گرم بر لیتر به تعداد 9 نمونه که هر یک به ترتیب 50، 75 و 100 mg/L (شانه‌ی‌ها) در دو راکتور به مدت 50 ساعت بهره‌برداری گردیدند.

جهت انجام آزمایشات زیست آزمونی به کار گرفته شد. که با انجام مطالعه و امکان‌پذیری انتخاب شده‌بود.

화계 گریده و چگونگی‌های شیمیایی جهت آزمایش زیست آزمونی,

\[
Tu = \frac{100\%}{LC_{50}}
\]

(1)

جدول 1- مشخصات راکتور مولد آموز فراصوت

<table>
<thead>
<tr>
<th>مشخصه</th>
<th>فراصوت</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامتر</td>
<td></td>
</tr>
<tr>
<td>TI-H-5</td>
<td>نوع دستگاه</td>
</tr>
<tr>
<td>آلمان</td>
<td>کشور سازنده</td>
</tr>
<tr>
<td>شرکت سازنده</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>حجم راکتور (L)</td>
</tr>
<tr>
<td>ابعاد دستگاه (cm)</td>
<td>500</td>
</tr>
<tr>
<td>نوان ورودی دستگاه (W)</td>
<td>75</td>
</tr>
<tr>
<td>فرکانس (kHz)</td>
<td>2/5</td>
</tr>
<tr>
<td>ناپیسته</td>
<td>نوع جریان</td>
</tr>
<tr>
<td>استیل</td>
<td>جنس مخزن</td>
</tr>
</tbody>
</table>

ویژگی‌های فنی و مشخصات آن در ذیل مورد بررسی قرار گرفته‌اند. راکتور اوتراسونیک مورد استفاده در پژوهش 130 kHz اوتراسونیک در مدت 5 تا 60 دقیقه برای تجزیه پرکاروتین استفاده شد. مشخصات فنی دستگاه اوتراسونیک در جدول 1 نشان داده شده است. راکتور پرتو فرابنفش و پرکاروتین به شکل استوانه‌ای و از جنس پلکسی‌گلاس بوده که به میزان آن فرابنفش به همراه پویش کوارتزی در وسط آن قرار گرفته است. میزان غلظت پراکسید هیدروژن اضافه شده به راکتور 500 mg/L.

استفاده در پژوهش در جدول 2 مشخص شده است.
بررسی میزان سمیت پرکلرواتین

جدول ۲- وزن‌گیه‌ای فنی لاب‌های فراپنتی

<table>
<thead>
<tr>
<th></th>
<th>UVA</th>
<th>UVA</th>
<th>UVC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>430</td>
<td>430</td>
<td>430</td>
</tr>
<tr>
<td>T9</td>
<td>360</td>
<td>360</td>
<td>45</td>
</tr>
<tr>
<td>T5</td>
<td>320</td>
<td>280</td>
<td>55</td>
</tr>
<tr>
<td>TUV</td>
<td>36</td>
<td>52</td>
<td>6</td>
</tr>
</tbody>
</table>

ثبت گردید. نتایج جهت تعیین ارتباط بین میزان سمیت و غلظت، ضرب SPSS همیشه‌ای و SPSS جهت تعیین LC₅₀ و حذف بالا و پایین بر اساس اخراج شد. همچنین غلظت به‌طور مداوم و میر ۱۰۰٪ مرگ و میر به ترتیب از طریق محاسبه غلظتی که در آن مرگ و میر ۱۰۰٪ و میر از ۹۹٪ بود تعیین شد.

یافته‌ها

یافته‌های حاصل از پژوهش در جدول ۳ و نمودارهای ۱ تا ۴ نشان داده شده است. نتایج به دست آمده از آزمایشات زیست آموزشی محصولات حاصل از تجزیه پرکلرواتین توسط فرایند اولتراراونیک، فرایند فلوئوریز (UVC/ H₂O₂) و فرایند اولتراراونیک US/UVC/ H₂O₂ که به ترتیب در نمونه‌های ۲ تا ۵ نشان داده شده است. همچنین LC₅₀ و واحد سمیت در دو روزهای زمان ۲۴، ۴۸، ۷۲ و ۹۶ h برای این فرایندها در جدول ۳ ارائه شده است.

۱۸۸
جدول ۳: نتایج آزمون سمیت پرکلوراتین و فراپتی‌های تصفیه بر دافنیا مگنا

<table>
<thead>
<tr>
<th>زمان (h)</th>
<th>میزان</th>
<th>حاصل از سمیت پرکلوراتین</th>
<th>حاصل از سمیت اولتراسونیک</th>
<th>حاصل از سمیت UVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>LC₅₀(mg/L)</td>
<td>35/54</td>
<td>73/48</td>
<td>57/62</td>
</tr>
<tr>
<td>25/25</td>
<td>LC₅₀(mg/L)</td>
<td>23/61</td>
<td>71/37</td>
<td>57/62</td>
</tr>
<tr>
<td>8/45</td>
<td>LC₅₀(mg/L)</td>
<td>24/75</td>
<td>73/48</td>
<td>57/45</td>
</tr>
<tr>
<td>4/65</td>
<td>LC₅₀(mg/L)</td>
<td>27/72</td>
<td>73/48</td>
<td>57/62</td>
</tr>
<tr>
<td>3/54</td>
<td>LC₅₀(mg/L)</td>
<td>35/54</td>
<td>73/48</td>
<td>57/62</td>
</tr>
<tr>
<td>3/88</td>
<td>LC₅₀(mg/L)</td>
<td>23/61</td>
<td>71/37</td>
<td>57/62</td>
</tr>
<tr>
<td>2/48</td>
<td>LC₅₀(mg/L)</td>
<td>24/75</td>
<td>73/48</td>
<td>57/45</td>
</tr>
<tr>
<td>2/65</td>
<td>LC₅₀(mg/L)</td>
<td>27/72</td>
<td>73/48</td>
<td>57/62</td>
</tr>
<tr>
<td>2/88</td>
<td>LC₅₀(mg/L)</td>
<td>23/61</td>
<td>71/37</td>
<td>57/62</td>
</tr>
<tr>
<td>1/48</td>
<td>LC₅₀(mg/L)</td>
<td>24/75</td>
<td>73/48</td>
<td>57/45</td>
</tr>
<tr>
<td>1/65</td>
<td>LC₅₀(mg/L)</td>
<td>27/72</td>
<td>73/48</td>
<td>57/62</td>
</tr>
<tr>
<td>1/88</td>
<td>LC₅₀(mg/L)</td>
<td>23/61</td>
<td>71/37</td>
<td>57/62</td>
</tr>
<tr>
<td>1/48</td>
<td>LC₅₀(mg/L)</td>
<td>24/75</td>
<td>73/48</td>
<td>57/45</td>
</tr>
<tr>
<td>1/65</td>
<td>LC₅₀(mg/L)</td>
<td>27/72</td>
<td>73/48</td>
<td>57/62</td>
</tr>
<tr>
<td>1/88</td>
<td>LC₅₀(mg/L)</td>
<td>23/61</td>
<td>71/37</td>
<td>57/62</td>
</tr>
</tbody>
</table>

نمودار ۱: حاصل از سمیت پرکلوراتین بر مرگ و میر دافنیا
نمودار ۲: حاصل از سمیت اولتراسونیک بر مرگ و میر دافنیا
نمودار ۳: حاصل از سمیت UVC بر مرگ و میر دافنیا
گستردگی‌هایی از آلاینده‌های مختلف در فاضلاب‌ها حضور دارد که از طریق روش‌های معمول موجود گاهی شناسایی نمی‌شود و علاوه بر آن در صورت ساختاری و تغییر الکتریکی آنها حاصل خواهد گردید. البته این موضوع در آب‌های آب‌های پژوهشی تحقیقات شده است. به همین دلیل سازمان‌ها حفاظت محیط زیست و مدیریت آنها در محیط زیست بیشتر کرده‌اند. سیستم کمک‌رسان سازمانی که روش‌های انرژی برای ارزیابی اثرات اضافه‌گری روش‌های تصفیه مورد استفاده قرار گرفته است. شاید، در این راستا بر اساس روش آماری پروپت، فاکتورهای سیستم برکالکولئین (EC) و LC50 در 24 ساعت می‌باشد. با توجه به نمودار 1 می‌تواند در صورتی که مرگ و میر و اکسیژن تولید شده سیستم محیط زیست پاک کننده در مدت 96 ساعت به صورت EC50 و LC50 بهره‌برداری شود، ظرفیت اکسیژن تولید شده در این زمان سیستم محیط زیست و در نتیجه میزان سمیت افزایش می‌یابد.

نتایج این مطالعه با گزارش‌های سازمان حفاظت محیط زیست در طول زمان به طور معنی‌دار افزایش می‌یابد. در نتیجه میزان سمیت محیط زیست و در نتیجه میزان سمیت افزایش می‌یابد. در نتیجه میزان سمیت محیط زیست و در نتیجه میزان سمیت افزایش می‌یابد.

با توجه به داده‌های به دست آمده در این تحقیق، آنالیز آماری و جدول 1 مشخص می‌شود که میزان سمیت برکالکولئین بیشتر از محول‌های خروجی هر فرآیند است. میزان سمیت در فرآیندهای تخیریدن (چند روش اکسیژن‌سوز با هم) کمتر از فرآیندهای با یک روش اکسیژن‌سوز به تهیه‌ای است. همچنین با توجه به نمودار 2 تا 5 مشخص می‌شود که مرگ و میر و اکسیژن و میزان سمیت پس از فرآیندهای مختلف تصفیه از سیستم‌ها و داشته‌اند. هرچه زمان بیشتر باشد میزان LC50 کاهش می‌یابد و در نتیجه میزان سمیت افزایش می‌یابد.

بحث

توجه گسترده‌ی به اثرات آلاینده‌های موجود در فاضلاب‌های خروجی از صنایع بر روی اکوسیستم‌های رودخانه‌ای را در رونمایی انجام داد که این اثرات می‌تواند باعث افزایش میزان سمیت محیط زیست در این زمان شود. در نتیجه میزان سمیت محیط زیست و در نتیجه میزان سمیت افزایش می‌یابد.
ب) سمیت محصولات حاصل از تجزیه پرکلرواتیلن

میزان سمیت در فرایندهای مختلف به صورت زیر است:

\[\text{US} > \text{UVC} > \text{UVC} / \text{H}_2\text{O}_2 > \text{US} / \text{UVC} / \text{H}_2\text{O}_2 \]

با توجه به نمودارهای ۲ تا ۵ مشخص می‌شود که مرکز و میزان سمیت از بین بستن و بازیابی اول بیشتر می‌کند. هرچه زمان بیشتر باشد میزان سمیت کاهش می‌یابد و در اتفاق قرار می‌گیرند تجزیه پرکلرواتیلن شده و میزان سمیت یا نسبت به قرار یافته با یک روش اکسیداسیون چند روش اکسیداسیون باهم (روش هیبریدی) باعث تجزیه بیشتر پرکلرواتیلن شده و میزان سمیت را نسبت به قرار یافته با هر دلیل تولید رادیکال‌های بیشتر هیدروکسیل و تجزیه بیشتر پرکلرواتیلن باشد.

مهدی صادقی و همکاران

است، کاهش رشد و تولید مثل 7/5 - 8/5 mg/L و 9/1 - 18 mg/L در 1/1 h اتفاق می‌افتد. کاهش توزان

در 28 h در مدت 7/5 mg/L و 9/1 - 18 mg/L در مدت زمان 24 h اتفاق می‌افتد. نتایج به دست آمده با استانداردها و مطالعات مشابه هم‌خوانی دارد (18).
نتیجه گیری
سمیت پرکلرواتیلن به تنهايي و قبل از كاربرد فرايندهاي تصفیه بايگان است و پس از كاربرد فرايند تصفیه به صورت اکسیداسیون پيشرفته کاهش مي یابد. میزان سمیت در فرايندهاي هيبريد (کاربرد چند روش اکسیداسیون با هم) كمتر از فرايندهاي با یک روش اکسیداسیون (مثل اولتراسونیک به تنهايي) بود. توالي کاهش سمیت در مورد تمام دوره زمانی مشابه بود. لذا فرضیه کاهش سمیت محصولات حاصل از تجزیه پرکلرواتیلن بعد از انجام فرايندهاي ذكر شده قابل قبول است. لازم به ذكر است اگرچه در محلول خروجی از فرايندهاي مختلف اکسیداسیون شیمیایي ترکیبات بينابیني مختلف وجود دارد ولي سمیت آنها كمتر از سمیت اولیه پرکلرواتیلن است.

علت اين امر ممکن است جزيی بودن غلفت محصولات بينابیني باشد که باعث کاهش مقدار سمیت مي شود.

تشکر و قدردانی
این مقاله حاصل (بخشی از) پایان‌نامه با عنوان بررسی پتانسیل فناوری‌های تلفیقی اکسیداسیون شیمیایی و بیولوژیکی در حذف ضر کلرو اتان از مقطع دکترای تخصصی در سال 1390 و کد 13448 است که با حمایت دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران اجرا شده است.

Toxicity Assessment of Perchloroethylene and Intermediate Products after Advanced Oxidation Process by Daphnia Magna Bioassay

Mahdi Sadeghi¹*, Kazem Naddafi², Ramin Nabizadeh²

¹Assistant Professor of Environmental Health Research Center, Faculty of Health, Golstan University of Medical Sciences, Gorgan, Iran.
²Professor of Department of Environmental Health Engineering, Faculty of Health, Tehran University of Medical Sciences, Tehran, Iran.

Received; 19 June 2013 Accepted; 17 September 2013

Abstract
Background and objective: Perchloroethylene is a chlorinated hydrocarbon used as a solvent in many industries and services activities such as dry cleaning and auto industry as degreasing. We carried out a bioassay using Daphnia Magna in order to determine the ecological effects of wastewater treatment through applying advanced oxidation processes (ultrasonic, ultraviolet irradiation and hydrogen peroxide processes) for removal of perchloroethylene.

Materials and Methods: Due to the sensitivity of Daphnia and reports indicating this species is the most sensitive aquatic invertebrate to a variety of organic compounds, toxicity of perchloroethylene and its intermediate degradation products during applying different processes was tested using Daphnia. Lethal concentration (LC50) and toxic units (TU) were determined. In to determine toxicity of perchloroethylene, its stock solution was prepared at a concentration of 100 mg/L. Then, nine samples each containing 0 (control), 5, 10, 20, 30, 40, 50, 75, and 100% by volume of the primary stock solution were prepared. To determine the toxicity of the intermediate products of perchloroethylene by ultrasonic, photolysis, photolysis with hydrogen peroxide and photosonic processes, an initial concentration of perchloroethylene for each reactor (100 mg/L) was taken. All experiments were carried out at the Laboratory of Microbiology, Faculty of Health, Tehran University of Medical Sciences, Iran.

Results: It was found that the 24 h LC50 for perchloroethylene on Daphnia Magna was 35.51 mg/L. The 48 h, 72 h and 96 h LC50 of perchloroethylene were 28.058, 21.033, and 19.27 mg/L respectively. Toxicity of perchloroethylene was decreased after oxidation processes.

Conclusion: The toxicity after hybrid processes was lower than the single processes. The toxicity reduction was the same during all time period. Hence, the hypothesis of reducing toxicity of the intermediate products of perchloroethylene degradation after the abovementioned processes is acceptable. It is noteworthy that although there are different intermediate compounds in the effluent of various chemical oxidation processes, but they are less toxic compared with the original perchloroethylene; this may be due to the partially concentration of intermediate products that will decrease toxicity.

Keywords: Perchloroethylene, ultrasonic, ultraviolet, hydrogen peroxide, Bioassay, Daphnia Magna

*Corresponding Author: mahdikargar1@gmail.com
Tel: +98 1714421663