بررسی عوامل موثر در تولید هالواستیک اسیدها و اندازه‌گیری غلظت آنها در آب خروجی تصفیه خانه‌های شهر تهران در نیمه اول سال 1389

امیر حسین حسینی، نویسنده مسئول

چکیده

زمینه و هدف: معمولاً ترین روش کنترل نیاز بهداشتی آب کلرزی است، ولی با تاکید بر ترکیبات آبی فیزیکی که در طی فرآیند تصفیه به خوبی حذف نشده‌اند، در نتیجه تولید غلظت فوق‌العاده‌ای از تری هالومتان‌ها نیز می‌شود. هالواستیک اسیدها بعد از تری هالومتان‌ها به عنوان فرآیند جانبه مشابه کلرزی در کلیه فرآیندهای تصفیه آب مصرف می‌شوند. در تحقیقات قبلی پژوهشگران با توجه به بررسی فنی کارکرد تصفیه‌های مدل پژوهشگر بهبودی در عملیات تصفیه انجام شده، بررسی‌های جدیدی برای باور به وقوع کلیه تغییرات ناشناخته در حالت تغییرات در محیط اجتناب نمی‌آورد. در این تحقیق، بررسی غلظت هالواستیک اسیدها در آب جویی توسط تصفیه‌های شهر تهران در نیمه اول سال 1389 انجام شد.

روش بررسی: نمونه‌برداری از آب سطحی و تصفیه‌شده شهر تهران انجام شد. در نمونه‌های آب سطحی دما، pH، کلر آزاد باقی مانده و هالواستیک اسیدها تعیین شد. در نمونه‌های آب تصفیه‌شده pH، کلر آزاد باقی مانده و هالواستیک اسیدها و کل کربن آهی اندازه‌گیری شدند. در نمونه‌های آب تصفیه‌شده pH، کلر آزاد باقی مانده و هالواستیک اسیدها و کل کربن آهی اندازه‌گیری شدند. در نمونه‌های آب تصفیه‌شده pH، کلر آزاد باقی مانده و هالواستیک اسیدها و کل کربن آهی اندازه‌گیری شدند.

نتیجه‌گیری: نتایج مطالعه در شهر تهران نشان داد که غلظت هالواستیک اسیدها در آب سطحی و تصفیه‌شده شهر تهران از نظر قانون مجازات کمتر است. در نمونه‌های آب سطحی غلظت کلرین آب باقی مانده در فصول ماه‌های بهار و تابستان بین 3/8/8 و 4/1/7 بوده و در نمونه‌های آب تصفیه‌شده بین 3/8/8 و 2/6/7 بودند.

واژگان کلیدی: هالو استیک اسیدها، کل کربن آهی، جذب اشعه فرابنفش در 254 nm، آب، فرآورده‌های جانبه گندزدایی

پذیرش: 91/01/16

دریافت: 91/01/16

نویسنده مسئول:
mgh939@gmail.com
پیچیدگی از ترکیبات آلتی به کار می‌رود.

200 BCAA DBPs استیک اسید و تری کلرو استیک اسید را به ترتیب از تقسیم جذب پرتو فرابنفش در طول موج زمینه، منو، دی کلرو استیک اسید و تری کلرو استیک اسید (DBPs) نشان می‌دهد که مواد آلتی بیان می‌کنند که بیشتر اجزای مواد آلتی طبیعی مولکولی زیاد مانند اسید هیومیک و اسید فولویک در آب می‌باشند. الکترود وسایل ترکیبات آلتی مورد بررسی قرار دادند.

میزان بیشتر اجزای مواد آلتی طبیعی مولکولی زیاد مانند اسید هیومیک و اسید فولویک در آب می‌باشند. الکترود وسایل ترکیبات آلتی مورد بررسی قرار دادند.

میزان بیشتر اجزای مواد آلتی طبیعی مولکولی زیاد مانند اسید هیومیک و اسید فولویک در آب می‌باشند. الکترود وسایل ترکیبات آلتی مورد بررسی قرار دادند.

میزان بیشتر اجزای مواد آلتی طبیعی مولکولی زیاد مانند اسید هیومیک و اسید فولویک در آب می‌باشند. الکترود وسایل ترکیبات آلتی مورد بررسی قرار دادند.

میزان بیشتر اجزای مواد آلتی طبیعی مولکولی زیاد مانند اسید هیومیک و اسید فولویک در آب می‌باشند. الکترود وسایل ترکیبات آلتی مورد بررسی قرار دادند.
کلرواستیک اسید، دی کلرواستیک اسید و منوکلرواستیک اسید مورد بررسی شدند. از سطحی به صورت ماهانه و در ۲ فصل (بهار و تابستان) نمونه برداشت گردید که در آن نمونه‌ها از نظر pH جذب اشعه فرابنفش و کل اlí مورد آزمایش قرار گرفت. اشعه فرابنفش در طول موج ۲۵۴ nm و استفاده از روش شماره ۹۱۹۰۱۲۹۹/۲ آزمایشگاه‌های کلیه و دی‌کلرواستیک اسید همچنین مطالعاتی در ارتباط با وجود این ترکیبات و برور سرطان ها، تاخیر در رشد، سقط زودرس، تغییرات قلبی مادرزادی انجام گردیده است (۱۳ تأثیرات بهداشتی ناشی از ترکیبات منوکلرواستیک اسید مورد مطالعه قرار گرفته است). همچنین مطالعات در بار با استفاده از ترکیبات منوکلرواستیک اسید به نظر می‌رسد که برای انسان سرطان‌زا باشند. البته آزمایشات در این مورد بر روی زیستگاه مادرزوده یافته گردیده است. دی‌کلرواستیک اسید به عنوان یک عامل هپاتوکسیک در حیوانات شناخته شده است. ایجاد سرطان کبد در حیوانات ناشی از دی و تری کلرواستیک اسید به اثبات رسیده است. همچنین تماس با استفاده از هالو استیک اسید بیشتر از تری کلرواستیک اسید در موش‌های ماده سبب نقص های قلبی در جنین آنها شده است. در مطالعات صورت گرفته بر روی حیوانات جنس نر، دی‌کلرواستیک اسید و تری کلرواستیک اسید تأثیرات نامناسبی بر روی قدرت باروری را به منظور تغییرات در سطح صورت نموده است. با توجه به مطالب ذکر شده و این که در ایران تاکنون ترکیبات هالو استیک اسید مورد بررسی واقع نشده، این ترکیبات در آب تولید شده توسط تصفیه‌های زیر الکترودیزی در سطح و زیرزمینی نمی‌گردد. آب سطحی عبارت است از رودخانه‌های کرج، لار و جاجرود که به ترتیب تأمین کننده آب سد امیر کبیر (سد کرج)، سد لار و سد لتیان هستند. از رودخانه جاجرود ۴ و از رودخانه کرج و از رودخانه لار تغذیه می‌شوند. برای انجام این مطالعه از سطحی و آب تصفیه‌شده نمونه برداشتی صورت گرفت.

مواد و روش‌ها

این تحقیق از نوع مطالعات بنیادی – کاربردی است که در آن عوامل مؤثر در تولید هالواستیک اسیدها و غلظت این
فوتوشیمی موثر در تولید هلواستیک اسیدها و…

کارایی ستون، خطا در حجم تزریق، متغیر بودن یا کامل بودن فرآیند استخراج تعیین مقدار همراه با خطای، بنابراین از استاندارد داخلی استفاده می‌شود که این خطاها را برطرف می‌نماید. انتخاب استاندارد داخلی عموماً به دیدگاه استفاده می‌شود که این خطاها را برطرف می‌نماید.

مقدار آب به دستگاه GC می‌رسد. در حالی که در درجات شکل (TOC) در 12 ساعت در 400 درجه سانتی‌گراد قرار گرفته، 5 نگهداری می‌شود. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب کمال استریت بسته شده بوده و در حالی که از طریق (DMS) توسط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. هر 50 ml استاندارد داخلی (200 mg TOC) در 75 min شرایط دستگاه و درب در مدت 50 min جهت اندازه‌گیری. HAA استفاده می‌شود که این خطاها را برطرف می‌نماید.

جدول 1: مولکول‌های غلظت مواد آلی طبیعی در منابع سطحی تهران در فصل بهار 1389

<table>
<thead>
<tr>
<th>SUVA(L/mg.m)</th>
<th>UV-254(L/cm)</th>
<th>TOC(mg/L)</th>
<th>pH</th>
<th>رودخانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/32</td>
<td>0/17</td>
<td>3/98</td>
<td>7/5</td>
<td>کرک</td>
</tr>
<tr>
<td>0/18</td>
<td>0/18</td>
<td>4/22</td>
<td>7/43</td>
<td>جاجرود</td>
</tr>
<tr>
<td>0/5</td>
<td>0/16</td>
<td>3/8</td>
<td>7/8</td>
<td>لار</td>
</tr>
</tbody>
</table>

در شیمی موادغذایی محصول پایدار، فناوری‌هایی ممکن است برای غلظت مواد آلی، پیشنهاد شود.
جدول 2: میانگین غلظت مواد آلی طبیعی در منابع سطحی نهرهای در فصل تابستان 1389

<table>
<thead>
<tr>
<th>SUVA(L/mg.m)</th>
<th>UV-254(1/cm)</th>
<th>TOC(mg/L)</th>
<th>pH</th>
<th>رودخانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/79</td>
<td>0/1/94</td>
<td>2/71</td>
<td>7/46</td>
<td>کرج</td>
</tr>
<tr>
<td>4/83</td>
<td>0/1/32</td>
<td>2/67</td>
<td>7/4</td>
<td>جاجرود</td>
</tr>
<tr>
<td>3/03</td>
<td>0/1/49</td>
<td>1/88</td>
<td>7/9</td>
<td>لار</td>
</tr>
</tbody>
</table>

یافته‌ها

جدول ۲ میانگین غلظت مواد آلی طبیعی (TOC,UV, SUVA) در رودخانه‌های کرج، جاجرود و لار را در فصل بهار و تابستان نشان می‌دهد. تغییرات زیادی در میزان مواد آلی طبیعی در فصل تابستان (ماهه اول سال) نشان می‌دهند. حداقل و حداکثر غلظت در رودخانه‌های کرج، جاجرود و لار را در (TOC,UV-254/suVA) نشان می‌دهد.

درجه وزمان انکوباسیون در رودخانه‌های کرج، جاجرود و لار را در (Incubation Temperature) درجه وزمان انکوباسیون (30 min و 70 °C) و جریان انکوباسیون (250 μl/s) در اختیار بود. در این روش از آشکار ساز ECD با استفاده سرعت تریال 500 rpm روش اصلی Nitzel، آزمایشگاهی روش اصلاح شده مقاله ارائه شده توسط P.L و همکاران بود. اطلاعات خروجی از دستگاه توسط Blender نرم‌افزار varian که صاحب امتیاز آن شرکت است. مورد برداشت قرار کرده، در شکل ۱ و ۲ روش کرومین‌گر در حالت ۱۰۰ μg/L با غلظت HAAs گراف شده بوده دستگاه GC و کرومین-گر نمونه آب آنالیز شده از نظر وجود HAAs بی‌عنوان نمونه آورده شده است.

شکل ۲: میانگین غلظت TOC در منابع آب سطحی در فصل تابستان در سه ماه اول سال 1389
در نیمه اول سال ۱۳۸۹ در تصفیه خانه ۱ به ترتیب ۲۷/۷۶-۵۷/۶۸ در تصفیه خانه ۳ و ۲۷/۷۱-۵۶/۸۹ در تصفیه خانه ۵ است. همانطور که دیده می‌شود در میزان pH و مقدار کل آزاد 
پایین‌ترین در خروجی تصفیه خانه ۳ همراهی توده در فصل بهار و تابستان تغییرات محسوسی مشاهده نمی‌گردد و 
همان‌طور که در ترکیب ۴ نمایانه می‌دهد در میزان HAAs تغییرات 
دیده می‌شود.

جدول ۴: میانگین غلظت هالواسیک اسیدها در آب‌های تصفیه‌شده توسط تصفیه خانه‌های آب تهران در فصل تابستان ۱۳۸۹

<table>
<thead>
<tr>
<th>میزان (mg/L)</th>
<th>pH</th>
<th>تصفیه خانه آب</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل آزاد باتیمانه</td>
<td>شماره ۱</td>
<td>عدد ۱</td>
</tr>
<tr>
<td>TCAA (mg/L)</td>
<td>DCAA (mg/L)</td>
<td>HAAs (mg/L)</td>
</tr>
<tr>
<td>۱/۴۵</td>
<td>۳۲/۲۹</td>
<td>۴۸/۷۳</td>
</tr>
<tr>
<td>۱/۷۱</td>
<td>۳۷/۲۳</td>
<td>۴۸/۳۳</td>
</tr>
<tr>
<td>۱/۶۱</td>
<td>۳۴/۳۳</td>
<td>۴۸/۳</td>
</tr>
</tbody>
</table>

بحث

جدول ۱ و ۲ نتایج مربوط به پارامترهای دما، UV-TOC، pH و میزان تصفیه‌های آب تهران در فصل بهار و تابستان نشان می‌دهد. مقدار میزان 
طبیعی است. میزان تصفیه خانه‌های ناشار ۵۰، ۴۳ و ۶۳ درصد به ترتیب در دوره‌های کرج، چابهار و آذر در فصل بهار به ترتیب حدود 
۱/۳۸ و ۱/۴۴ و ۱/۳۹ در تصفیه‌های شماره ۱ و ۲۷/۳۷ و ۲۷/۳۸ مشاهده گردیده. میزان میزان 
مایکرگستر در ترکیب ۴ نمایانه می‌دهد که این داده‌ها نشان می‌دهد که میزان تصفیه‌های بیشتر است. (۲۲). همچنین در مطالعه غلظت آبی و پاسیفیک تلاشی تکراردهی
محمودی فومنی و همکاران

جاگیت گندزیایی در آب شرب شکه توزیع آب تهران که توسط Chang و همکاران در سال 1388 صورت گرفته نشان می‌دهد که در شبکه شیره غلظت TOC در تمام نمونه‌های برداشت شده از سطح شهر کمتر از 10 mg/L است. که وجود کربن آلی در شبکه توزیع دالت بر این دارد که تصفیه خانه‌های موجود احتمالاً قادر به حذف کامل مواد مولد آلی از آب نیستند و یکی از آنها وارد شبکه توزیع می‌گردد. همچنین در آب شرب تهران نسبت اجزای هییدروفیلکس کمتر از اجزای هیدروفیلیک است. (12). جدول 3 نشان می‌دهد که میانگین غلظت هالووایتکس اسیدها بر حسب میکرومگدری در لیتر نیز در آب‌های تصفیه شده شاخه‌های شماره 1، 5، 3، 4 و 5 در فصل بهار به ترتیب 0.9/15/0.8/0.5 µg/L و در فصل تابستان 7/3/1 µg/L و در فصل زمستان 3/6/3 µg/L. همچنین به علت بهبود بیشتر تولید آب توسط اجزای آلی توزیع دارد. تحقیقات انجام شده و همکاران در سال 2010 تشکیل دهنده هالووایتکس است. (25).

حضور پیش‌بینی شکل دهنده هالووایتکس است

حضور مواد آلی تغییری به علت پیش‌بینی شکل در نظر گرفته شده چاگیت گندزیایی بسیار مهم است. مقدار و نوع این فرآورده‌ها بستگی به ویژگی‌های آلی می‌بندد. تحقیقات انجام شده و همکاران در سال 2010 تشکیل دهنده هالووایتکس است. (25). همچنین در فصل زمستان 3/6/3 µg/L و در فصل تابستان 7/3/1 µg/L و در فصل بهار به ترتیب 0.9/15/0.8/0.5 µg/L و در فصل تابستان 7/3/1 µg/L.
تبیین گری میزان هالوژن‌استیک اسیدها در آب تصفیه شده، نیاز به ۳ نتیجه‌گیری مطرح می‌شود. EPA یا در میزان مراکز اداره‌های تصفیه آب‌ها، کمترین میزان از این گونه‌ها را شناسایی می‌کند. میزان میکروبی مکملین از این دیدگاه، میزان سطح دچاری است. به‌طور کلی، این میزان تغییرات نشان‌دهنده است که در تصفیه خانه‌ها و در آب تصفیه شده داده یافت. در این پژوهش، دانه‌هایی و غلاف‌هایی گونه‌های اصلی و غلاف‌های هالوژن‌اسید اسید در آب تصفیه شده، هم‌اکنون در مطالعه‌های مختلف ترکیب‌های سطحی مفصل و تغییرات فصلی سطحی قابل توجهی است. البته این اصطلاحات و فاصله‌های گونه‌ای، مطالعات شخص‌های اصلی و گونه‌های مربوط کلرواستیک اسید و UV-254 در فصول مختلف تابع تغییرات نیست، در واقع می‌توان این دو گونه اسید را به عنوان متغیر تاثیر گذار و اندیکاتور فعالیت پیش‌سازهای UV-254 و TOC برای هالوژن‌اسیدها در نظر گرفت. نتایج آنالیز آماری رگرسیون در رودخانه کرج نشان می‌دهد که بین این دو پارامتر وجود دارد، در آنالیز آماری مدل رگرسیون R=0.72 است، لذا sig=0.031 و R=UV-254 به عنوان متغیر تاثیر گذار و اندیکاتور فعالیت پیش‌سازهای UV-254 و TOC برای هالوژن‌اسیدها در نظر گرفته می‌شود و به دلیل ارتباط زیاد بین UV-254 و TOC، میزان هالوژن‌اسیدها نشان‌دهنده است که نتایج MIP در رودخانه کرج نشان می‌دهد که میزان 60 میکروگرم لیتر برای هالوژن‌اسیدها هم به افزایش میزان UV-254 در فصل بهار میزان هالوژن‌اسیدها در مدل بالاتر (فصل تابستان) اتفاق می‌افتد.
تشکر و قدردانی
این مقاله حاصل از طرح تحقیقاتی مصوب مرکز تحقیقات محیط زیست دانشگاه علوم پزشکی تهران در سال 88 با کد 8923-68-24-0-982-88 با عنوان "بررسی غلظت هالوسیک اسیدها در آب آشامیدنی شهر تهران" است که با حمایت این مرکز اجرا شده است.
19. Toth G, Kelty K, George E, Read E, Smith M. Adverse male reproductive effects following subchronic exposure of rats to sodium...
Survey of the effective factors in the production of HAAs and measuring their concentration in the Tehran outlet water treatment plants in the first half of 2010

Amir Hossein Mahvi1,2, Noushin Rastkari3, Ramin Nabizadeh Nodehi1, Shahrokh Nazmara1, Simin Nasseri4, Mahboobeh Ghoochani5

1Department of Environmental Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
2Centers for Solid Waste Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
3Centers for Air Pollution Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
4Centers for Water Quality Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
5Ministry of Health and Education, Tehran, Iran.

Received; 4 April 2012 Accepted; 16 May 2012

Background and Objectives: Chlorination is the most common method of water disinfection. Chlorine reaction with natural organic compounds nor removed completely during treatment process would result in forming disinfection byproducts. Followed by trihalomethanes, Haloaceticacides are the second main byproducts of chlorination in water. The research works conducted in Iran have assessed trihalomethanes. Hence, this is the first time we are reporting haloacetic acids in Iran.

Materials and Methodology: We collected samples from surface water resources and treated water in Tehran for six consecutive months (first half, 2010). We measured temperature, pH, UV adsorption at 254 nm and TOC in each surface water sample and analyzed pH, residual chlorine, and haloacetic acids in the treated water samples.

Results: We found that TOC in surface water resources is 3.6-4.42 and 1.78-2.71 mg/l in spring and summer respectively. Moreover, haloacetic acids concentration was found to be 41.7-55.56 and 34.83-43.73 μg/l in spring and summer respectively.

Conclusion: Our results revealed that concentration of NOM, TOC, and HAAs was more in spring than summer. In addition, concentration of HAAs was depended up on NOM and TOC. Considering maximum permeable concentration of HAAs (60 μg/l) by EPA, it can be claimed that concentration of HAAs was less than the maximum permissible level in all of the samples. However, the immensity of the monitored values to the standard values can be a warning for concerned authorities in water industry.

Keywords: trihalomethanes, TOC, UV adsorption at 254 nm, water resources, disinfection byproducts

*Corresponding Author: mgh939@gmail.com
Tel: +98 9398283601