مطالعه خصوصیات اجزای مواد آلی طبیعی در منابع سطحی آب تهران

دکتر محمدعلی زژولی، دکتریتی ناصری، دکترعلیرضا مصدقی
naserisse@tums.ac.ir نویسنده‌مسئول: تهران، دانشگاه علوم پزشکی تهران، دانشکده بهداشت، گروه هموگلوکسی محیط.

چکیده
زمینه و هدف: مواد آلی طبیعی که از منابع طبیعی و مصنوعی وارد آب می‌شوند به ویژه ماده‌های خاصی از جمله اسید، بو و متر متنوع، واکنش با کلر و تشکیل فلورورده های جانی کندزدایی، که اغلب سرطان را می‌باشد و تری نیز عدم امکان حل فک کامل در تصوفی می‌باشد. از اهمیت ویژه‌ای برخوردار هستند. آب شرب تهران عمدتاً از آب سه رودخانه کرج، جاجرود و چارمین می‌گردد و هدف از آن تأمین مطالعه تعیین غلظت مواد آلی طبیعی منابع آب شرب تهران و اجزای هیدروفلایک و هیدروفلایک‌های آب می‌باشد.

روش بررسی: نمونه برداری در سه ماه متوالی (اردیبهشت، خرداد و تیر) از منابع سطحی آب شرب تهران انجام شد. نمونه‌ها از نظر pH، جذب اشعه فاوت در طول موج 254 نانومتر، هیالات الکترنیکی و جذب ویژهی اشعه فاوت به مورد آنالیز قرار گرفتند. استخراج اجزاء آب دوست و آب گریز مواد آلی طبیعی مطلق روش استاندارد تمیف انباش.

یافته‌ها: نتایج نشان داد که میانگین غلظت مواد آلی طبیعی در آب رودخانه کرج، جاجرود و چارمین به ترتیب 33/11/12/857 کیلوگرم در لیتر می‌باشد. درصد اجزاء آب دوست و آب گریز آب رودخانه کرج به ترتیب 41/1 و 59/7 در آب رودخانه جاجرود به ترتیب 57/4 و 40/7 درآب رودخانه چارمین به ترتیب 68/4 و 32/7 درآب. میانگین این چهار منبع آب به ترتیب 34/4% و 7/5% و جذب ویژه اشعه فرا پنف آب رودخانه های کرج، جاجرود و چارمین به ترتیب 13/7/28 و 34/2 می‌باشد.

نتیجه‌گیری: نتایج این بررسی نشان داد که آب های مورد مطالعه باید با انرژی شبکه فلورورده های جانی کندزدایی از جمله هالوستیک‌ها و تری هالوستین‌ها دارند اما بدین اینکه نیست اجزاء آب گریز کمی بیش از اجزاء آب دوست است. احتمال تشکیل تری هالوستین‌ها بیشتر می‌باشد.

مقدار جذب ویژه اشعه فرا پنف با کاهش از آب گریز آب دوست می‌باشد و اجزای آلی تشکیل می‌شود.

واژگان کلیدی: مواد آلی طبیعی، هیدروفلایک. هیدروفلایک‌های جانی کندزدایی، منابع آب

1. دکتریتی بهداشت محیط، استادیار دانشکده بهداشت دانشگاه علوم پزشکی تهران
2. دکتریتی هموگلوکسی محیط، استاد دانشکده بهداشت دانشگاه علوم پزشکی تهران
3. دکتریتی بهداشت محیط، استاد دانشکده بهداشت دانشگاه علوم پزشکی تهران
Natural Organic Matters (NOMs) are organic compounds that are present in natural water sources and can react with disinfectants to form Disinfection By-Products (DBPs) and Haloacetic Acides (HAAs) and Trihalomethanes (THMs), which can pose health risks.

The Average Relative Molecular Mass (RMM) of NOMs is typically less than 1000 Da, and their concentration can vary widely across different water sources. NOMs can be divided into two categories: Natural Organic Molecules (NOM) and Organically Bound Dissolved Organic Matter (OBDM).

The largest fraction of NOMs is composed of a branch of plants known as the Chlorophyll, which includes algae, cyanobacteria, and diatoms. These organisms release organic matter into the water as a byproduct of their metabolism.

Disinfection By-Products (DBPs) are formed when NOMs react with disinfectants, such as chlorine, to form compounds that can be harmful to human health.

Haloacetic Acides (HAAs) are formed when NOMs react with chlorine, while Trihalomethanes (THMs) are formed when NOMs react with iodine or bromine.

The concentration of NOMs and DBPs can be measured using analytical techniques such as High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Mass Spectrometry (LC-MS).

The concentration of NOMs and DBPs can be reduced by using advanced treatment processes such as activated carbon filtration, membrane filtration, and reverse osmosis.

The impact of NOMs and DBPs on human health can be mitigated by implementing effective treatment processes, such as advanced oxidation processes, and by monitoring and regulating the concentration of NOMs and DBPs in drinking water.
NOMs (Natural Organic Matter) are substances that absorb specific wavelengths of light. They are typically measured using a UV-Vis spectrophotometer to detect absorption at a specific wavelength (e.g., 254 nm). The concentration of NOMs can be calculated using the Lambert-Beer law, which states that the absorbance (A) of a solution is directly proportional to the concentration (C) of the absorbing species and the path length (L) of the light through the solution.

The concentration of NOMs can be calculated using the following equation:

\[
A = \varepsilon CL
\]

where:
- \(A\) is the absorbance at a specific wavelength
- \(\varepsilon\) is the molar absorptivity of the compound
- \(C\) is the concentration of the compound in molar units
- \(L\) is the path length of the light through the solution

The concentration of NOMs can be further characterized by their absorbance spectra, which provide information about the molecular composition of the NOMs. This information can be used to identify key functional groups and to estimate the abundance of different types of NOMs in a given sample.
نتایج

جدول 1: میزان NOMs در آب تهیه‌کننده مصرف آب تهران به‌عنوان عامل وقوع تهیه‌کننده گیاه‌های مصرفی.

<table>
<thead>
<tr>
<th>باکتری</th>
<th>نتایج</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان NOMs (mg/L)</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>نتایج</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2: میزان NOMs در آب تهیه‌کننده مصرف آب تهران به‌عنوان عامل وقوع تهیه‌کننده گیاه‌های مصرفی.

<table>
<thead>
<tr>
<th>باکتری</th>
<th>نتایج</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان NOMs (mg/L)</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>نتایج</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

نکته:

1. میزان NOMs در آب تهیه‌کننده مصرف آب تهران به‌عنوان عامل وقوع تهیه‌کننده گیاه‌های مصرفی
2. نتایج نشان‌دهنده میزان NOMs در آب تهیه‌کننده مصرف آب تهران است.

Study of Natural Organic Matter Characteristics and Fractions in Surface Water Resources of Tehran

M.A. Zazouli¹, *S.Nasseri², A.Mesdaghinia²

¹Department of Environmental Health Engineering, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
²Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Received 7 October 2008; Accepted 30 November 2008

ABSTRACT

Background and Objectives: Natural organic matters (NOMs) are abundant in natural water resources and in many ways may affect the unit processes in water treatment. Although NOMs are considered harmless but they have been recognized as disinfection by-products (DBPs) precursors during the chlorination process. Formation of DBPs highly depends on the composition and concentration of NOMs. The objective of this study was to determine natural organic matter and its fractions concentrations in the surface water sources of Tehran.

Materials and Methods: Water sampling was conducted monthly between May to July in three rivers of Lar, Jajrood and Karaj, as the main drinking water supplying sources in Tehran. Quantitative parameters of pH, EC, UV₂₅₄ and DOC were studied based on standard methods. The XAD-7 resin method was used for fractionation of NOMs.

Results: Results showed that NOM concentrations in Lar, Jajrood and Karaj rivers were 8.53, 12.9 and 11.3 mg/L, respectively. The HPO (hydrophobic) fraction was predominant compared to the HPI (hydrophilic) fraction in water samples. The mean of total percent of HPO and HPI fractions were about 57% and 43%, respectively.

Conclusion: Since the hydrophobic NOM fraction exhibits higher trihalomethane formation potential (THMFP) than hydrophilic part, Tehran water chlorination exhibits higher THMFP than haloacetic acid formation potential (HAAFP). The information obtained from this study may be further employed in the design of the control techniques and management strategies for the water treatment plant, especially for DBPs reduction.

Key words: Natural Organic Matter (NOMs), fractionation, hydrophobic, hydrophilic, water sources