برآورد میزان سرعت مصرف آب، تولید سرمانه فاضلاب و غلظت اکسئزن مورد نیاز تجزیه زیست شیمیایی آن بر مبنای متغیرهای درآمد و دمای هوای شهر كرمانشاه

علی‌الموسوی، امیرحسین هاشمی‌نژاد، علی‌اصغر عربی‌پور، علی‌اصغر عربی‌پور

نویسنده‌مستند: قرمشاده، پیام‌کار هدایت، خیابان دانشگاه، دانشگاه پیشکش، گروه بهداشت محیط

درباره: 88/98/08/88/08/08/888

چکیده
زمینه و هدف: به مطالعه تغییر میزان سرعت مصرف آب و تولید فاضلاب و سرمانه فاضلاب در این محل مورد نظر می‌گردد. رابطه آب مصرفی، تولید فاضلاب و سرمانه بر آلی‌های زیستی تجزیه بستر روی سطح مورد تحقیق قرار گرفته و ابعاد رقمی در دو راستا: دمای هوای شهر و درآمد مورد مطالعه قرار گرفته است.

روش‌بررسی: در مطالعات توصیفی- تحلیلی، مایه‌های تغییرات به میزان سرعت مصرف آب و تولید فاضلاب در این محل مورد نظر قرار می‌گیرد. این مطالعه به‌عنوان پیشکش سطح دوم، درآمد، دما و هویت فاضلاب، و دما و هویت سرمانه به‌عنوان سطح اول، درآمد، دما و هویت فاضلاب، و دما و هویت سرمانه مورد مطالعه قرار گرفته است.

آزمونیت: در این محیط به‌منظور نظر متوسط و پایدار منطقه کاملاً مشخص و تعریف شده‌ای از نظر شهرداری و عرف اجتماعی منطقه و عرف سطح مورد نظر به‌عنوان مشخص تجزیه بستر روی سطح مورد تحقیق قرار گرفته و ابعاد رقمی در دو راستا: دمای هوای شهر و درآمد مورد مطالعه قرار گرفته است.

نتایج: کنار سرمانه فاضلاب در این محل مورد نظر می‌گردد. رابطه آب مصرفی، تولید فاضلاب و سرمانه بر آلی‌های زیستی تجزیه بستر روی سطح مورد تحقیق قرار گرفته و ابعاد رقمی در دو راستا: دمای هوای شهر و درآمد مورد مطالعه قرار گرفته است.

واژگان کلیدی: سرمانه فاضلاب، تولید فاضلاب، سرعت مصرف آب، دمای هوای شهر كرمانشاه

1- دکتری بهداشت محیط دانشگاه مشهدی بهداشت محیط، دانشگاه علوم پزشکی کرمانشاه
2- دکتری امیر حسین، استادیار آزمایشگاه پزشکی کرمانشاه
3- کارشناس ارشد دانشگاه، شرکت آب و فاضلاب شهری استان کرمانشاه
4- دانشجوی کارشناسی ارشد بهداشت محیط، دانشگاه علوم پزشکی کرمانشاه
مقدمه
رشد سریع جمعیت و روند به رشد مصرف منابع به ویژه اب برای مقاومت به ورودی منجر به تولید بیش از پیش فاصله شده است. تقاضای مخزون جزیی از دیدگاه قدیمی اساسی در جهت طراحی امکانات جمع آوری، بهبود و دفع آن است. برای دستیابی به طراحی مطلوب، فارغ از موانع احتمالی در اینجا، به دیدار و نگهداری اطلاعات دقیق از مشخصات کمی و کیفی فاصله در ابتدای برنامه ریزی ضرورت دارد.

مورد و روش‌ها
مطالعه به صورت توصیفی- تحلیل طراحی شد که با استفاده از اطلاعات جمعیتی سرشماری سال ۱۳۷۵، مناسب بایستی جمعیت شهروندان (۷۱۲۰۰ نفر) و به لحاظ به دارآماد ماهیانه، به صورت متوسط و پایین تیمی گردد، و منطقه با دارآماد خوب، دارای تغییرات خوب و فعالیت رژیمی و فعالیت اجتماعی معرفی می‌شود. سطح مورد نظر با پایان به عنوان یک گروه مطالعه انتخاب گردید. منطقه کسری با دارآمد میلاد ۱۹۹۰، نفر باله، بین ۳۷/۵۷ و تعداد ۳۰۲۱۸ نفر به عنوان نماینده دارآمد خوب، متوسط و پایین داده شدند. میزان دارآماد ماهیانه مشترک بین اساس مطالعه مقدماتی از ۱۵۰ حساس که در صورت اقدامی از مناطق انتخاب و با استفاده از برنامه‌های که به همین منظور به شده بود تخمین زده است. مجازی خروجی سه منطقه به عنوان استراحتی ویژه نموده برای دیدگر
گردید. به لحاظ محدودیت‌های موجود، از هر ایستگاه جهت تعیین دیا فاضلاب از هر منطقه در شرایط گرم و همینطور شرایط سرد صورت گرفتند. انداده‌گیری کلیه بارمترها، مطالعه استاندارد آزمایشات آب و فاضلاب (2005) و مانع به روش BOD معیار مهندسی فاضلاب انجام شد. (9) به روش BOD متد و COD معیار به روش BOD و آزمون ضرایب همبستگی آزمون معیار داري Z مدل گرایش خطا و مدل گرایش خطا با روش قدم به قدم جهت پیش‌بینی برخی پارامترها از این افزار صورت پذیرفت.

یافته‌ها

آنالیز داده‌ها مدل‌های مساده برای یاری پیشسازهای مصرف آب (Y_{waste}) و میزان سرانه تولید فاضلاب (Y_{waste}) بر مبنای تغییرات دما (T) و درآمده معیار یک صد هزار تن (Y_{waste}) پیش‌بینی می‌دهد (جدول 1).

\[
Y_{waste} = 8/1497 + 9/424 (T) \quad (1)
\]

\[
Y_{waste} = 28/949 + 9/424 (T) + 6/03 (I) \quad (2)
\]

\[
Y_{waste} = 28/949 + 11/05 (I) \quad (3)
\]

\[
Y_{waste} = 28/949 + 11/05 (I) + 10/67 (T) \quad (4)
\]

\[
Y_{waste} = 28/949 + 11/05 (I) + 10/67 (T) + 22/57 (I) \quad (5)
\]

\[
Y_{BOD} = 11/82 + 7/29 (I) \quad (6)
\]

جدول 1: ویژگی‌های جدول 1: ویژگی‌های جدول 1: ویژگی‌های جدول 1: ویژگی‌های مدل گرایش خطا برآورد میزان سرانه مصرف آب، تولید فاضلاب، و غلظت آکسیژن محول زیست پیش‌بینی فاضلاب منطقه سه‌گانه مورد بررسی داشته کردن‌شده‌اند.

<table>
<thead>
<tr>
<th>موارد مورد برآورد</th>
<th>ضریب دهان (D)</th>
<th>مقادیر تا (I)</th>
<th>ضریب درصد (r)</th>
<th>P_Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان سرانه مصرف آب (Wat)</td>
<td>0.001</td>
<td>0.17</td>
<td>0.27</td>
<td>9/44 (روزنامه‌سازی)</td>
</tr>
<tr>
<td>میزان سرانه تولید فاضلاب (Wat)</td>
<td>0.001</td>
<td>0.16</td>
<td>0.27</td>
<td>9/44 (روزنامه‌سازی)</td>
</tr>
<tr>
<td>غلظت آکسیژن محول زیست (BOD)</td>
<td>0.001</td>
<td>0.17</td>
<td>0.27</td>
<td>9/44 (روزنامه‌سازی)</td>
</tr>
<tr>
<td>شیمیایی فاضلاب</td>
<td>0.001</td>
<td>0.17</td>
<td>0.27</td>
<td>9/44 (روزنامه‌سازی)</td>
</tr>
</tbody>
</table>

Wat=water, waste=wastewater, BOD=Biological Oxygen Demand
پارامترهای مورد بررسی

<table>
<thead>
<tr>
<th>منطقه</th>
<th>کسری</th>
<th>تعاون</th>
<th>الیه</th>
</tr>
</thead>
<tbody>
<tr>
<td>پساب کلیه</td>
<td>32940</td>
<td>33168</td>
<td>37532</td>
</tr>
<tr>
<td>پساب</td>
<td>4988</td>
<td>5053</td>
<td>6265</td>
</tr>
<tr>
<td>اصلی</td>
<td>5</td>
<td>6</td>
<td>515</td>
</tr>
<tr>
<td>میانگین درآمد ماهیانه (صدسهار تومان)</td>
<td>2/72 ± 0/177</td>
<td>0/172 ± 0/172</td>
<td>0/175 ± 0/175</td>
</tr>
<tr>
<td>ناپایدار</td>
<td>0/398 ± 0/147</td>
<td>0/168 ± 0/168</td>
<td>0/291 ± 0/291</td>
</tr>
<tr>
<td>قطعات</td>
<td>205 ± 205</td>
<td>160 ± 160</td>
<td>188 ± 188</td>
</tr>
<tr>
<td>زیستگاه</td>
<td>220 ± 220</td>
<td>170 ± 170</td>
<td>204 ± 204</td>
</tr>
<tr>
<td>ناشتا</td>
<td>120 ± 120</td>
<td>112 ± 112</td>
<td>158 ± 158</td>
</tr>
<tr>
<td>اصلی</td>
<td>64</td>
<td>66</td>
<td>62</td>
</tr>
<tr>
<td>BOD 5 (mg/l)</td>
<td>283 ± 132</td>
<td>327 ± 132</td>
<td>305 ± 132</td>
</tr>
<tr>
<td>COD (mg/l)</td>
<td>Mean (Sd)</td>
<td>Mean (Sd)</td>
<td>Mean (Sd)</td>
</tr>
<tr>
<td>پاکیزه</td>
<td>p-value</td>
<td>0/012 < 0/01</td>
<td>0/012 < 0/01</td>
</tr>
<tr>
<td>بخش BOD</td>
<td>0/012 < 0/01</td>
<td>0/012 < 0/01</td>
<td></td>
</tr>
<tr>
<td>ناپایدار</td>
<td>0/012 < 0/01</td>
<td>0/012 < 0/01</td>
<td></td>
</tr>
<tr>
<td>قطعات</td>
<td>0/012 < 0/01</td>
<td>0/012 < 0/01</td>
<td></td>
</tr>
<tr>
<td>زیستگاه</td>
<td>0/012 < 0/01</td>
<td>0/012 < 0/01</td>
<td></td>
</tr>
<tr>
<td>ناشتا</td>
<td>0/012 < 0/01</td>
<td>0/012 < 0/01</td>
<td></td>
</tr>
<tr>
<td>اصلی</td>
<td>0/012 < 0/01</td>
<td>0/012 < 0/01</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2: میزان سرطان مصرف آب، تولید سرطان فاضلاب، در آمد ماهیانه و میزان سرطان بازاری: مناطق سه گان مورد بررسی شهر کرمانشاه

جدول 3: توزیع میانگین (SD) و ضریب هم بستگی BOD, COD، BODs و نسبت آنها در فعالیت مناطق سه گان شهر کرمانشاه

<table>
<thead>
<tr>
<th>P</th>
<th>COD</th>
<th>BOD</th>
<th>BODs</th>
<th>COD Mean (Sd)</th>
<th>BOD Mean (Sd)</th>
<th>BODs Mean (Sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>0/012 < 0/01</td>
</tr>
<tr>
<td>منطقه</td>
<td>الیه</td>
<td>تعاون</td>
<td>کسری</td>
<td>الیه</td>
<td>تعاون</td>
<td>کسری</td>
</tr>
<tr>
<td>پاکیزه</td>
<td>0/012 < 0/01</td>
</tr>
</tbody>
</table>
بحث و نتیجه گیری

نتایج این مطالعه نشان داد که ضریب تأثیر دما بر میزان مصرف آب در مناطق کسری و الهه مشابهه می‌باشد. این ضریب در آزمایش‌های نیز به طوری که تاثیر ترکیب این دو پارامتر بر میزان مصرف آب در مناطق کسری 37.30 درصد نسبت به میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که ضریب تأثیر دما بر میزان مصرف آب در منطقه گزارش‌های نیز نشان داد که
توجهی است که می‌تواند در تشکیل مدیریت کارآماد موسسات آب و فاضلاب موثر باشد. به‌پیشنهادی شود چنین مطالعه‌ای در مورد فرهنگ مصرف در جامعه نیز انجام گردد.

تشکر و -corner

از دلیل توجه آقای مهندس مظفر صفری مدیریت شرکت آب و فاضلاب شهری به جهت تهیه‌دادن لازم برای اجرا این
7. de Lourdes Fernandes Neto M, Naghettini M, von Sperling M, de Lo Libânio M. Assessing the relevance of intervening parameters on the per capita water consumption rates in Brazilian urban communities.
An Estimation of Water Consumption, Wastewater Generation and its Biodegradability per Capita, Based on Social Income and Meteorological Temperature in Kermanshah

*Almasi A.1, Hashemian A.M.2, Amirpour A.3, Dargahi A.2, Mahmodi M.1
1Department of Environmental Health Engineering, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
2School of Public Health and Institute of Public Health Researches, Kermanshah University of Medical Sciences, Kermanshah, Iran
3Water and Wastewater Engineering Company of Province, Kermanshah, Iran

Received 31 October 2009; Accepted 14 January 2010

ABSTRACT

Background and Objectives: The aim of this study is to investigate water consumption, domestic wastewater generation and organic matter concentration, based on both, economical income and meteorological temperature.

Materials and Methods: The method of this study is descriptive and analytical. A checklist was used to collect data on economical income. Water consumption was obtained based on water bills. Wastewater generation and organic matter such as biochemical oxygen demand (BOD) per capita/day were measured every four hours, during a day in three regions of Kermanshah city: Kasra, Ellaheiah and Taavon.

Results: Comparing water consumption in winter and summer showed significant difference in three regions, mentioned above. The water consumption was (398 ± 75, 291 ± 48 and 188 ± 50) for warm climate and (200 ± 25, 188 ± 35 and 140 ± 41) for three regions respectively in cold weather. In spite of an apparent difference in BOD in three regions, it was not significant statistically. Water consumption has strongly considerable relationship with economical income (r =0.988, P_value <0.001), while the generated wastewater in these regions were not different, statistically for warm climate (220 ± 60, 204 ± 15 and 170 ± 34), and in cold weather (170 ± 21, 158 ± 31 and 112 ± 29), also the generated wastewater did not have considerable difference in cold climate. This study confirms that, the effects of these two parameters, i.e. monthly economical income and environmental temperature on water consumption, generated wastewater and biodegradable organic loading per capita/day is considerable. It was concluded that water consumption and wastewater generations were much more in warm climate than in cold weather.

Conclusion: Finally through this study the estimation of water consumption, wastewater generation and BOD concentration becomes possible, which is beneficial for establishment of water consumption.

Keywords: Water consumption, Generation wastewater, Organic load, Monthly Income and Temperatur

*Corresponding Author: alialmasi@yahoo.com
Tel: +98 831 4274622 Fax: +98 831 4274623