مقاله سلامت و محیط: فصلنامه علمی پژوهشی
علمی بهداشت محیط ایران
دوره سوم، شماره دوم، تابستان 1389، ماهنامه 177

مقايسه كارايي فناوري سونوشيميايی و فتوسونوشيميايی جهت حذف سباین از محیط آبی

رضا شکوهی، امیرحسین محیي، ضیاءالدین پیادی
bonyad14@yahoo.com

نويسنده مشهد: همدان، خيانان مهدي، دانشگاه علوم پزشکی همدان، دانشکده بهداشت، گروه بهداشت محیط.

درباره: 139/88/15

چکیده
زمینه و هدف: سباین، یک ماده بسیار سرمای است که به طور معمول از ترکیبات معمول در فاضلاب صنایع متعددی از جمله آبکاری استخراج می‌شود. فیروزکاری و تمرکزکاری فیروزکاری وجود دارد. ورود این ماده به محیط زیست محیط زیست خطرهای محیطی را به همراه دارد. هدف از انجام این مطالعه مقایسه كارايي فناوري سونوشيميايی و فتوسونوشيميايی جهت حذف سباین از محیط آبی بوده است.

روش بررسی: در این مطالعه از یک دستگاه مواد اولیه فراصوت با نیروی 300 وات در فرکانس 120 کیلوهرتز و یک لامپ 125 وات جیوه ای با فشار کم استفاده شده است. تغییرات در ترکیب آزمایش ها 20 تا 35 میلی جیوه در غلظت گرم در لیتر بوده است. در این تحقیق اثر فاکتورهای محیط آبی، غلظت اولیه سباین، و زمان فرايند بر کارايي حذف مواد بیولوژی فراوردن کرده است.

پایانه: نتایج حاصل از تحقیق نشان داد که مکانیزم كارایي حذف سباین در فناوري سونوشيميايی (فراصوت 120 کیلوهرتز، زمان تماس 90 دقیقه، pH 7) به 72.7% رسیده است.

نتیجه گيري: نتایج حاصل از این تحقیق نشان داد که كارایي فرايند فتوسونوشيميايی جهت حذف سباین از محیط آبی بيشتر از فرايند سونوشيميايی است. ضمناً رابطه مناسب بین pH فرايند و زمان میانه رابطه مناسب از تغییرات pH و غلظت سباین، رابطه عكس دارد.

واژگان كليدي: سباین، فرايندهاي اكسيديسیون پیشرفته، فتوسونوشيميايی، سونوشيميايی

1- دکتری بیروتی محیط، استاد دانشکده بهداشت دانشگاه علوم پزشکی همدان
2- دکتری بیروتی محیط، استاد دانشکده بهداشت دانشگاه علوم پزشکی تهران
3- کارشناسی ارشد بیروتی محیط، دانشگاه علوم پزشکی همدان
مقیدم

سیاست ماده شیمیایی است که به طور بیشتری و چه مصنوعی
ساخته می‌شود، که اکثر ترکیبات آن سبب زیادی دارد. از
جمله ترکیبات سیانید می‌توان به سیانید هیدروژن کاژی شکل
و نیز نمک‌های سیانید مثل سیانید سدیم و سیانید پتاسیم
اشتهار کرد. بعضی از باکتری‌های قارچ از جمله‌ها می‌توانند
سیانید را تولید کنند. این عنصر به‌طور مناسب و هوا
و رودخانه‌ها، سیانید از طریق فرایندهای صنعتی مثل آکاری،
ریشه‌های، صنایع درمانی، خشک کردن و فرش و فیلم‌های
عکاسی وارد آب می‌شود و از طریق تلویح، استنشاق و غذا
خوردن وارد بدن می‌شود (۱). در غلظت بالا رود رودی قلب
و مغز تاثیر زیادی داشته و با اندیشی بیش از ایجاد
کم و سپس مرگ می‌شود. سیانید می‌تواند در غلظت ۰.۵ mg/dL
در خون تولید سمن کند. معمولاً مرگ در غلظت ۰.۳ mg/dL
پایین‌تر اتفاق افتاده است. سازمان‌های حفاظت مهیج
USEPA (United States Environmental
) (Protect Agency

مقدمه

در ۵/۱۰-۲۴ pH از سیانید را
از آب حذف کرده‌اند (۵). یکی دیگر از روش‌هایی است که در
سال‌های اخیر برای تصفیه و فاضلاب‌های استفاده قرار
گرفته‌است، اشباع فرابنده (UV) است. این اشباع به‌خست از امواج
الکترومغناطیسی است که دارای دامنه برون‌دهی ۱۰۰ تا
۴۰۰ نانو متراً واقع می‌شود. کلا امواج UV با استفاده از دمای
B تابی A (دامنه برون‌دهی این ۷۰ تا ۳۱۵ و تابی C (دامنه
برون‌دهی این ۲۰۰ تا ۳۸۰ نانو متراً است.) عمل کنند. در دمای
آب با استفاده UV معمولاً در دامنه طول موج ۲۰۰ تا ۴۰۰ می‌تواند
C تابی قرار می‌گیرد. و در دمای کارایی
حدف فلز در آب در ایجاد ترکیبات این (US) US/UV/US
مقاومه کردن. که طی با استفاده US/UV/US
از فنل و ۱۰/۱ از کل کربن آلی (TOC) در آب را در مدت
زمان ۸۰ دقیقه حذف کردن در حالت کارایی حذف این US/UV
با استفاده US/UV/US
قابل توجه بوده طوری که US/UV
فین و ۲/۵ از کل کربن آلی (TOC) US/UV/US
زا مدت US/UV/US
در زمان حذف کردن (۷).

مزایای مشترک هر دو روش عبارتند از: ۱- عدم تولید
فرآورده‌های جانینی و زاوازی را ۲- فقدان مشکلات
بو و همه ۳- عدم نیاز به کاربرد و ذهنی سازی مواد شیمیایی
UV خط‌نگار ۴- جغه‌های صورت پس از استقرار واحدهای
US/UV با استفاده US/UV
بدین شرح است. این بنا برای اکسبوپسیون هیدروژن به سیستم UV
امواج اولتراسونیک از مولکول‌های آب و US/UV
زیر تولید می‌گردد و سپس تحت تأثیر اشباع فرابنده
رادیکالهای

H2O + US → H0 + OH 0
H0 + O2 → H2O2 0
H2O2 / HO2+ + hv → 2OH 0

آموزه‌های فن علوم نوین و فنونشیمیایی...
ضایعات دینی پیاده و همکاران

غلظت سنگین اولیه سیانید اثر درمان زمان فرابند و اثر فراکس در
حذف سیانید مورد بررسی قرار گرفت. ابتدا مدل های استوک
سیانید تهیه و سپس نمونه ها با غلظت های مورد نظر (غلظت
سیانید در نمونه ها بر اساس بررسی متون در حد ۵/۷ میلی گرم
در لیتر تهیه گردید. شکل های ۱ و ۲ به ترتیب نمای پاپلوت های
UV و US را نشان می دهد.

جدول ۱: مشخصات دستگاه اولتراسونیک در این تحقیق

<table>
<thead>
<tr>
<th>نام دستگاه (Elma TI – H – ۵)</th>
<th>فرد ورودی</th>
<th>فراکس</th>
<th>انرژی وارد شده در واحد سطح</th>
<th>حجم راکتور</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰۰ W</td>
<td>۵۰۰ W</td>
<td>۵۰۰ W</td>
<td>۰/۵ w/cm²</td>
<td>۰/۵ Liter</td>
</tr>
<tr>
<td>۲۵ KHz, ۱۲۰ KHz</td>
<td>۲۵ KHz, ۱۲۰ KHz</td>
<td>۲۵ KHz, ۱۲۰ KHz</td>
<td>۰/۵ w/cm²</td>
<td>۰/۵ Liter</td>
</tr>
</tbody>
</table>

هومن غونه که ذکرگردی سیانید از آلانده های اصلی بسیاری
از صنایع از قبیل دمک، آبخور کلیستری، صنایع الكترونیک,
داروسازی بوده و جزو "الاالده های مقدم" است (۱۱ و ۱۴). به
همین دلیل محققین مختلف به دنبال یافتن روش های
صحيح مناسب تری به خدمات از نظریه های زیست محیطی
جهت حذف این آلادنده از محیط زیست است. لذا با توجه به
نکات فوق الذکر و در نظر گرفتن مزایای سیستم ترکیبی
انجام تحقیق جهت بررسی کارایی سیستم و مقایسه
US/UV آن با سیستم ترکیبی US/UV بدین طریق و
عملاً در این صورت حاصل اهمیت است. لذا در این تحقیق
به بررسی کارایی سیستم ترکیبی US/UV در حذف سیانید
در مقایسه با سیستم US پرداخته شده است. همین تاثیر
متغیری که نتیجه اهمیت شامل غلظت سنگین ورودی، فراکس
سیانید اولتراسونیک و زمان ماند pH US/UV در حذف سیانید مورد
ارزیابی قرار گرفت است.

مواد و روش‌ها

این تحقیق یک مطالعه تجاری بوده و جهت حذف سیانید
با استفاده از امواج فراصوت به صورت مجزا و تنی به صورت
تکی به برتو فرابند، در مقیاس آزمایشگاهی و به شکل
مقطع انجام گردیده است. به منظور تولید امواج فراصوت از
یک حمام اولتراسونیک ساخت شرکت آلمان که قابلیت تولید
امواج فراصوت در فرکانس ۴۵ و ۱۳۰ کیلوهertz با ۱۰ و
رودری ۵۰ و ۲۰۰ ولت را داشت استفاده گردید. همچنین به منظور
تولید امواج فرابند از یک لامپ ۱۲ ولت جهد حاوی یا با شار
کم استفاده گردید. مشخصات دستگاه اولتراسونیک در جدول
۱ ارائه گردید است. با توجه به هدف اصلی مطالعه به منظور
تعیین شرایط بهینه فرابند مورد نظر، اثر pH مکرر آبی

شکل ۱: نمای پاپلوت اولتراسونیک

شکل ۲: نمای پاپلوت
یافته‌ها

پH شکل ۳ تغییرات کارایی حذف نسبت به تغییرات با روش اوتراسونیک و نشان می‌دهد. همان‌طور که بیان شده‌است با افزایش کارایی حذف نیز افزایش می‌یابد اما اختلاف معادل میانه‌های نشان داده شده (P > 0.05). در شکل ۴ تغییرات کارایی حذف نسبت به تغییرات زمان تامس در دانه غلطه ۲/۵٪ میلی گرم در چهار و در روش اوتراسونیک نشان داده شده است. همان‌طور که مشاهده می‌شود که با افزایش زمان تامس و کاهش غلته سباید کارایی حذف افزایش می‌یابد که نتایج آنالیز آماری مشخص می‌کند که این اختلاف معادل است (P > 0.05). pH همان‌طور که از شکل ۵ بیان شده با افزایش کارایی حذف نیز افزایش می‌یابد اما اختلاف معادل معادل نشان داده نشان (P > 0.05). در روش ترکیبی اوتراسونیک و فرابنفش همانند روش اوتراسونیک به صورت مجزا مشاهده می‌شود که با افزایش زمان تامس و کاهش غلته سباید کارایی حذف افزایش می‌یابد که نتایج آنالیز آماری مشخص می‌کند که این اختلاف معادل است (P > 0.05). همچنین نتایج نشان داده که با افزایش فراکس، کارایی حذف سباید افزایش می‌یابد اما رابطه آماری معنی‌داری بین فراکس و کارایی حذف وجود ندارد (P > 0.05).

بنابراین مزیت اثر pH در میزان حذف سباید توسعه سیستم اوتراسونیک با فراکس 130 کیلوهَرتز افزایش می‌یابد. به‌طور کلی در این مطالعه به سه روش تغییرات غلته سباید در پیش گرفته که به‌طور دقتی تحقیق گرفته شده است و در این مطالعه به دلیل این که سیستم مورد نظر در این دو سباید محدود شده است. در این تحقیق چه جهت انتخاب گیری غلته سباید از روش ترکیبی در کتاب روش‌های استاندارد برای آزمایش‌ها (CN.D – Titrimetric Method) انتخاب شد (11). تاثیر به دست آمده با استفاده از نرم‌افزار (آزمون آنالیز واریانس یک طرفه و SPSS و Excel آزمون t مستقل) مورد تجزیه و تحلیل قرار گرفت.
مقایسه کاراپی فن اوری سونی شیمیایی و فتوشیمیایی...

داخل محلول در فرانکس ۳۵ کیلوهتر مربوط به شیمیایی
۱۳.۰۰۰ ماساکی و همکاران از سال ۲۰۰۴ از امواج صوتی
اکسیداسیون برای حذف سدیم دودسیل بنز سلولفات
استفاده کرده که این آزمایش در گلخانه های ۱۰۰ و
۱۰۰ میلی‌گرم در شب و در فرانکس ۶۰ و ۸۰ کیلوهتر
انجام شد که طبق نتایج آن با کاهش گلخانه دودسیل
بنز سلامت کاهش‌ها و افزایش فرانکس کاراپی حذف بیش
تر شد (۱۲). بایگو و همکاران از روش اکسیداسیون برای
حدف سیبانی انتقال کردن و نشان داده که با افزایش
زمان ماند کاراپی حذف بیش از انتظار بالا (۵). پردرک
و همکاران در سال ۲۰۰۳ نیز مطالعه مشابه (Iordache)
را انجام دادند (۱۴).

امر ترکیبی امواج فراصوت و اشعه فرابنف (فرانکس)
فراپوش شیمیایی ترکیبی از امواج فراصوت و فرابنف می‌باشد.
این فرابنف به منظور افزایش کردن اثرات فتوشیمیایی بر ارارات
فتوشیمیایی جهت افزایش تولید رادیکال های هیدروکسیل و
پلا بردن رانندان تخریب مواد آلی توسه پیدا کرده است (۱۳).
در این مطالعه با توجه به رانندان پایین تا متوسط فرابن
اکسیداسیون و فتوشیمی، کاربرد نوام امواج فراصوت با اشعه
فرابنف انجام شد. این رابط اثر ترکیبی این دو فرابنف به
صورت کاربرد متقابل اشعه فرابنف سیم امواج فراصوت در
راکتورهای مجزای دری عرضه شد.

نتایج بررسی بیان کرده تجربه اثر بکر بر سیبیوند. بو. همان
طوری که از شکل ۵ پیدا شد در شرایط ثابت رانندان تخریب
سیبانی فرابنف ۳۵ کیلوهتر در pH ۳/۵ و ۱۱ به
تریب ۸۰ و ۸۰/۸ این در حالتی که در شرایط مشابه
رانندان تخریب سیبانی فرابنف ۳۵ کیلوهتر در pH
۳/۵ و ۱۱ به تریب ۷/۷ و ۷۷/۸ این در حالتی که در حالتی که در شرایط مشابه
رانندان تخریب سیبانی فرابنف ۳۵ کیلوهتر در pH
۳/۵ و ۱۱ به تریب ۷/۷ و ۷۷/۸ این در حالتی که در حالتی که در شرایط مشابه
رانندان تخریب سیبانی فرابنف ۳۵ کیلوهتر در pH

Efficiency Compare of Both Sonochemical and Photosonochemical Technologies for Cyanide Removal from Aqueous Solutions

Shokuhi R.1, Mahvi A.H.2, * Bonyadi Z.1
1 Department of Environmental Health Engineering, School of Public Health, Hamedan University of Medical Sciences, Hamedan, Iran
2 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Received 10 January 2010; Accepted 4 April 2010

ABSTRACT

Backgrounds and Objectives: Cyanide is a species of high toxicity that found mostly in industrial effluents such as electroplating, metal mining, metallurgy and metal cleaning processes. Intrance of it to Existence enviroment contains very health hazardous. Purpose of this study, efficiency compare of both sonochemical and photosonochemical technologies for cyanide removal from aqueous solutions.

Materials and Methods: In this study, it has been used from a productive set of 500w power ultrasound waves in of two frequencies 35 kHz and 130 kHz and a 125 W low pressure mercury lamp. Experiments were performed at initial cyanide concentrations varying from 2.5 to 75 mg/L. in this study, The effects of parameters such as pH, time and initial cyanide concentration on the sonochemical and photosonic degradation have been studied.

Results: The results of the study showed that the maximom removal efficiency of cyanide had been achieved sonochemical technology was 71% while it was 74% by photosonic at frequency of 130 kHz, at time of 90 min, pH of 11 and initial cyanide concentration of 2.5 mg/l.

Conclusion: The results of the study showed that efficiency of photosonic process is more than for sonochemical cyanide removal from aqueous solutions. Also efficiency of cyanide removal has direct relationship with pH, frequency and time ,and it has reverse relationship with cyanide concentration for both processes.

Key words: Cyanide, advanced oxidation prosses, photosonochemistry, sonochemistry

*Corresponding Author: bonyad14@yahoo.com
Tel: +98 9359378235 Fax: