تولید الکتریسیته از طریق تصفیه فاضلاب شیبی سازی شده صنایع غذایی با استفاده از سلول سوخت میکروبی دو محفظه‌ای با استفاده از غشای نافیونی

محمدرضا فهمی نژاد، محمد ملکوتیان

نویسندگان: مهربان کرمان، خیابان هفت بانگ غلی، دانشگاه علوم پزشکی کرمان، دانشکده بهداشت، گروه بهداشت مهیج

دریافت: 1396/12/12

چکیده

زمینه و هدف: سلول سوخت میکروبی (Microbial fuel cells: MFC) یکی از پیشگامان دارای تولید انرژی توسط سیستم‌های بالغ برخوردار می‌باشد. تولید الکتریسیته از طریق تصفیه فاضلاب شیبی سازی شده صنایع غذایی با استفاده از سلول سوخت میکروبی (MFC) در محیط‌های بدون واسطه و کاتالیست‌های می‌باشد.

روش پردازش: در این مطالعه، سلول سوخت میکروبی مورد استفاده در این مطالعه، در محیط‌های بالغ بهره‌برداری صنایع غذایی شیبی سازی ذوب شده و میکروبی کریستینی برای تولید الکتریسیته از طریق قانون اهم و محبوبیت گردید. سلول‌های فشاری براساس کتاب روش‌های استاندارد تولید آماده‌اند.

نتیجه‌گیری: نتیجه‌گیری جدید پژوهش‌های میکروبی از موانع آماده برای تولید الکتریسیته و تصفیه از سیستم‌های حاضر در محیط‌های صنایع غذایی مورد استفاده گردید.

واژگان کلیدی: تولید الکتریسیته، تصفیه فاضلاب، سلول سوخت میکروبی، واسطه، کاتالیست، استاندارد

1- دکتران بهداشت مهیج، استاد مرکز تحقیقات بهداشت محیط و دانشکده بهداشت دانشگاه علوم پزشکی کرمان
2- دکتران بهداشت مهیج، دانش‌پژوهان دانشکده بهداشت دانشگاه علوم پزشکی اصفهان
3- دکتران بهداشت مهیج، مرکز تحقیقات ارتقای سلامت و دانشکده بهداشت دانشگاه علوم پزشکی زاهدان
4- دکتران بهداشت مهیج، دانش‌پژوهان دانشکده بهداشت دانشگاه علوم پزشکی جنگلی شالور اهواز
توصل کردن از طریق تصفیه فلامبیت

مقدمه

به منظور توسعه علم و تکنولوژی، بشر به طور چشمگیری وابسته به انرژی است. ۱/۵ در حال حاضر انرژی مورد نیاز دنیا عمدتاً به‌سیاهی به سوخته‌های فیسلی داشته و تقریباً ۸۶% انرژی دنیا از سوخته‌های فیسلی تهیه می‌شود. اما سوخته‌های فیسلی مخربی نفت تجدیدپذیر این است و در آینده بحراً انرژی برخوردار خواهد می‌گردد. علاوه بر این احترام سوخته‌های فیسلی به علت انش社会主义 اکسید مصرف جدی بر محیط زیست دارد (۹). نگرانی‌ها درباره تغییر اقلیم، افزایش نیاز جهانی به ذخایر نفت و گاز و کمیابی انرژی تحقیقات را به سمت انرژی‌های نو برای یاکوری نیروی سوخته فیسلی سوق داده است. از طرفی انرژی‌های مورد نیاز سیستم‌های تصفیه مداوم فلامبیت خواندار تکنولوژی‌های تصفیه جایگزین هستند که هزینه و هم انرژی مورد نیاز برای بهره‌برداری کارآمد از آنها کمتر باشد (۶، ۱۰ و ۱۵). همین دلیل تحقیقاتی در جهت جمع‌آوری انرژی قابل تجدیدی از منابع زاید آلی مورد مطالعه قرار گرفته و به نحو مشخصه شده است که میکروگانیسم‌های میکرو‌کاتایلیز در اتیول، اتانول، هیدروژن و الکترسیم تولید می‌کنند (۱۶-۱۸). در این مسیر تولید کلروژن‌های میکرو‌کاتایلیزی از طریق سلول‌های سوخته میکرو‌کاتایلیزی منظور است از سیستم‌های مختلف اهمیت

رافآقی در برنامه‌ریزی پیدا کرده است (۵، ۶، ۹، ۱۰ و ۱۵). سلول‌های سوخته میکرو‌کاتایلیزی، مدل‌های الکترسیمی هستند که تریو ای این میکرو‌کاتایلیزی تولید می‌کند (۱۶-۱۸). اصول بهره برداری در میکروگانیسم‌های به‌سیاهی به سوخته‌های فیسلی تهیه می‌شود. این تکنولوژی برای تولید هیدروژن زیستی از مادا آلی قابل تجدیدی تحقیق انواع مختلفی از فلامبیت‌ها و وهجتی به عنوان سنگسوزی برای سنجش اکسیدان مورد نیاز بسیار فراوانی می‌کند و بی‌ثباتی استفاده شده است(۸، ۱۲ و ۳۰). علاوه بر این پژوهش بررسی از طریق قلم باریک و کاریکاتور در سطح حیاتی است. می‌تواند به‌طور تکنیکی به بارداری الکتریکی خارجی که کاهش متوالی زیستی می‌کند. این طریق جریان الکتریکی و می‌تواند در این طرح، جریان الکتریکی شکل‌گیری کردن الکتریکی تبدیل می‌شود (۲۶-۲۶). از لحاظ انتقال الکترون به آنده، نو دو MFC ۲۵
مواد و روش‌ها

ساختار سول‌سوخت میکرویی (MFC) (و راه اندازی آن:
در این مطالعه سول‌سوخت میکرویی مورد نظر به صورت دومحفظه‌ای طراحی شده. این MFC شامل دو محفظه آند و کانال از جنس وزه‌های بالاتری گلیس به ضخامت کالرود آند و کانال از جنس صفحه گرافیتی با ابعاد 124×200×5 cm³ غشاء‌های پرتوی از جنس نائویون و مستقیماً اهم مندر
دیجتالی که با استفاده از سیستم مسد به الکترودها متص‌شده بود. الکترود‌ها (آپ دیوئیزیشن) موده‌های 24 ساعت خیال را در جدول محفظه آند و کانال توسط غشاء‌های پرتوی از هم جدا شده بودند که برای عملکرد مناسب، غشا قبل از استفاده به مدت 3 ساعت در محلول 2% NaCl قرار داده شد. حجم مولفه محفظه آند و کانال 1/5 لیتر بود. محفظه آند با فاضلاب به عنوان آنالیت پرشد که ورودی آن از قسمت پایین و خروجی آن از قسمت بالا بود. این محفظه کاملاً بی‌هوازی بود. برای جلوگیری از فعالیت باکتری‌های مانژوز محلول 2بروموآنتوسولفونات (BES) به عنوان اضافه می‌شد. جریان فاضلاب ورودی به صورت مداوم توسط یک پردازنده بزرگ شد و pH آن بر روی 5-7 تنظیم گردید. محفظه کانال به هوازی بود با افزایش دمای (mM) 50 در ضایعه‌های میکرویی سول‌سوخت. میزان تصفیه آن با استفاده از MFC های دو محفظه‌ای بود.

واسته کاتالیستی می‌باشد.

جدول ۱: مشخصات سویستی سنتیک شیب ماده‌های شده براساس فاضلاب

<table>
<thead>
<tr>
<th>pH</th>
<th>Alkalinity</th>
<th>SO₄</th>
<th>NH₃</th>
<th>P</th>
<th>TSS</th>
<th>BOD₅</th>
<th>COD</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>200</td>
<td>400</td>
<td>100</td>
<td>25</td>
<td>500</td>
<td>1500</td>
<td>3000</td>
<td>غلظت</td>
</tr>
</tbody>
</table>

شیب‌های سازی، فاضلاب صنعت غذایی، الکترودهای مولفه محفظه آند و کانال ورودی به صورت دومحفظه‌ای طراحی شده. در این مطالعه سول‌سوخت میکرویی مورد نظر به صورت دومحفظه‌ای طراحی شده. این MFC شامل دو محفظه آند و کانال از جنس وزه‌های بالاتری گلیس به ضخامت کالرود آند و کانال از جنس صفحه گرافیتی با ابعاد 124×200×5 cm³ غشاء‌های پرتوی از جنس نائویون و مستقیماً اهم مندر

دیجتالی که با استفاده از سیستم مسد به الکترودها متص‌شده بود. الکترود‌ها (آپ دیوئیزیشن) موده‌های 24 ساعت خیال را در جدول محفظه آند و کانال توسط غشاء‌های پرتوی از هم جدا شده بودند که برای عملکرد مناسب، غشا قبل از استفاده به مدت 3 ساعت در محلول 2% NaCl قرار داده شد. حجم مولفه محفظه آند و کانال 1/5 لیتر بود. محفظه آند با فاضلاب به عنوان آنالیت پرشد که ورودی آن از قسمت پایین و خروجی آن از قسمت بالا بود. این محفظه کاملاً بی‌هوازی بود. برای جلوگیری از فعالیت باکتری‌های مانژوز محلول 2بروموآنتوسولفونات (BES) به عنوان اضافه می‌شد. جریان فاضلاب ورودی به صورت مداوم توسط یک پردازنده بزرگ شد و pH آن بر روی 5-7 تنظیم گردید. محفظه کانال به هوازی بود با افزایش دمای (mM) 50 در ضایعه‌های میکرویی سول‌سوخت. میزان تصفیه آن با استفاده از MFC های دو محفظه‌ای بود.

واسته کاتالیستی می‌باشد.
تولید الکتریسیته از طریق تعیین فاضلاب....

ظرف محتمل فاضلاب در درجه حرارت اتاق (25°C) و برای جالوگیری از هدیایی مواد، بر روی مدت گذشته هم زن
یا 100 دور در دمای قرار گرفت. لحیم تلقیحی از نوع لحن
غفال و تصفیه خانه فاضلاب شهر کرمان تهیه گردید.

روش های آتالژ
شدت چربی، ولتن و توان تولیدی سیستم MFC در دیهای
میزان پارگذاری آلو (OLR) در میزان 44 روز آزمایش، با
استفاده از هم در دیجیتالی سنجیده شده و میزان الکتریسیته از
طریق قانون اهم به صورت زیر محاسبه شد:

\[I = V / R \]

که \(I \) شدت جریان، \(V \) ولتن و \(R \) مقاومت می‌باشد. توان
تولیدی نیز فرمول زیر محاسبه شد:

\[P = IV / A \]

که \(P \) توان و \(A \) مساحت آن‌گونه باشد. مقاومت سیستم
MFC کارایی کولمبِ سیستم نیز از این رابطه به دست می‌آمد:

\[CE = (C_{EX} / C_{TH}) \times 100 \]

\[C_{EX} = \left(\sum_{i=1}^{n} V_{i} \right) / R \]

\[C_{TH} = FbMv \]

این‌ها

یافته‌ها

یافته‌ها حاصل از این بروهش در شکل‌های 9-2 نشان
داده شده است. شکل‌های 9-2 به ترتیب میزان شدت جریان،
ولتن و دانسته جریان، توان تولیدی و کارایی کولمبی را در
شاخص \(pH \) و دیگر میزان مختلف نشان می‌دهد. همان‌طور که از
نمونه‌های پیداست در دبی 0/20، حداکثر شدت جریان
و میزان ولتن در دبی 0/20، حداکثر ولتن و در دبی
0/1، میدانی کارایی کولمبی به دست آمده. شکل‌های
5-8 نیز میزان تصفیه فاضلاب را در
دامنه آزمایشات در شرایط کاملاً متفاوتی با هوازی نشان می‌دهد. حداکثر
مسول‌سنجی، میزان شدت جریان، توان تولیدی و کارایی کولمبی را در
\(pH \) و دیگر میزان مختلف نشان می‌دهد. همان‌طور که از
نمونه‌های پیداست در دبی 0/20، حداکثر شدت جریان
و میزان ولتن در دبی 0/20، حداکثر ولتن و در دبی
0/1، میدانی کارایی کولمبی به دست آمده. شکل‌های
5-8 نیز میزان تصفیه فاضلاب را در
دامنه آزمایشات در شرایط کاملاً متفاوتی با هوازی نشان می‌دهد. حداکثر
مسول‌سنجی، میزان شدت جریان، توان تولیدی و کارایی کولمبی را در
\(pH \) و دیگر میزان مختلف نشان می‌دهد. همان‌طور که از
نمونه‌های پیداست در دبی 0/20، حداکثر شدت جریان
و میزان ولتن در دبی 0/20، حداکثر ولتن و در دبی
0/1، میدانی کارایی کولمبی به دست آمده. شکل‌های
5-8 نیز میزان تصفیه فاضلاب را در
دامنه آزمایشات در شرایط کاملاً متفاوتی با هوازی نشان می‌دهد. حداکثر
مسول‌سنجی، میزان شدت جریان، توان تولیدی و کارایی کولمبی را در
\(pH \) و دیگر میزان مختلف نشان می‌دهد. همان‌طور که از
نمونه‌های پیداست در دبی 0/20، حداکثر شدت جریان
و میزان ولتن در دبی 0/20، حداکثر ولتن و در دبی
0/1، میدانی کارایی کولمبی به دست آمده. شکل‌های
5-8 نیز میزان تصفیه Fv\(a\) و P کاهش یافته است. در این
مطالعه همچنین اثر غلظت فاضلاب و روزیه در عنوان سوخت
با دیگر مطالعات انجام گرفته در ارتباط با این تکنولوژی مورد
\(pH \) قرار گرفت که در جدول 1 نشان داده شده است. \(pH \)
پسپر خروجی نیز در طول آزمایش‌ها اندازه‌گیری شد که در
شکل 9 نشان داده شده است.
شکل ۲: میزان شدت جریان و ولتاژ تولیدی در دو یا یک میکروفیبر استیلیک به عنوان سوخت

این شکل نشان می‌دهد که ولتاژ تولیدی و شدت جریان در هر یک از شرایط مورد بررسی به سرعت کاهش می‌یابد.

شکل ۳: میزان توان و دانش جریان تولیدی از سوپرترین استیلیک ورودی به سطح سوخت میکرویی

این شکل نشان می‌دهد که توان و دانش جریان تولیدی از سوپرترین استیلیک ورودی به سطح سوخت میکرویی در هر یک از شرایط مورد بررسی به سرعت کاهش می‌یابد.

شکل ۴: کارایی کولمبی حاصل شده در پارک‌گیری‌های آبی مختلف از سوپرترین استیلیک ورودی به سطح سوخت میکرویی

این شکل نشان می‌دهد که کارایی کولمبی حاصل شده در پارک‌گیری‌های آبی مختلف از سوپرترین استیلیک ورودی به سطح سوخت میکرویی در هر یک از شرایط مورد بررسی به سرعت کاهش می‌یابد.

محققان: علی بازوهوشان، دانشجوی علوم بهداشت هیات ایران
تولید کشتی‌سازی از طریق تصمیم‌گیری

شکل ۵: راندمان حذف

COD و **BOD** در ترکیب سلول سوخت میکروبی در

pH معادل ۷

شکل ۶: راندمان حذف آمونیاک و فسفر از سویستری و روی پوست سلول سوخت میکروبی در

pH معادل ۷

شکل ۷: راندمان حذف جامدات مولکولی (VSS) و جامدات مولکول فرار (TSS) از سویستری و روی پوست سلول سوخت میکروبی در

pH معادل ۷
جدول ۲: مقایسه تولید الکتریسیته و عملکرد‌های سیستم کاندید ساختار راکتور غلظت کانالیت در غلظت های مختلف سوخت

| کاربرد کانالیت | میزان کانالیت | سیستم کاندید ساختار راکتور | سوخت | OLR (kg/m³.d) | کارایی حذف | حداکثر شدت جریان (mA) تولیدی | حداکثر ولتاژ (V) تولیدی | هوادهی و وار elegans | کاناد وار elegans | دوش holders | گلوزکر | گلوزکر | گلوزکر | گلوزکر | گلوزکر |
|---------------|----------------|-----------------------------|------|----------------|-------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| فاضلاب اسیمیک | ۱۷۵۷ | ۰/۷۲ | ۹۴/۵۴ | ۱/۷۱ | ۸۲/۲ | ۱۵۴/۰۰ | ۱/۹۷ | ۹۹/۲ | ۹۸/۵۴ | ۹۶/۷ | ۹۸/۶۴ | ۹۷/۵۵ | ۹۶/۵۴ | ۹۵/۵۴ | ۹۴/۵۴ |
| فاضلاب استیک | ۱۷۵۷ | ۰/۷۲ | ۹۴/۵۴ | ۱/۷۱ | ۸۲/۲ | ۱۵۴/۰۰ | ۱/۹۷ | ۹۹/۲ | ۹۸/۵۴ | ۹۶/۷ | ۹۸/۶۴ | ۹۷/۵۵ | ۹۶/۵۴ | ۹۵/۵۴ | ۹۴/۵۴ |

شکل ۸: تغییرات pH الکترولیت و پس از خروجی سیستم کاندید ساختار راکتور غلظت کانالیت.

شکل ۹: تغییرات pH سیستم کاندید ساختار راکتور غلظت کانالیت.

ضمناً، در حداکثر شدت جریان (mA) و حداکثر ولتاژ (V) تولیدی، ۱۷۵۷ کارایی تولیدی، ۰/۷۲ کارایی تولیدی، ۹۰/۲ کارایی تولیدی، ۹۸/۵۴ کارایی تولیدی، ۹۶/۷ کارایی تولیدی، ۹۸/۶۴ کارایی تولیدی، ۹۷/۵۵ کارایی تولیدی، ۹۶/۵۴ کارایی تولیدی، ۹۵/۵۴ کارایی تولیدی، ۹۴/۵۴ کارایی تولیدی.
بحث

اثر میزان ورودی در مدت بهره‌برداری

میزان جریان ورودی فاضلای بکی از پارامترهای بود که در این مطالعه مورد بررسی قرار گرفت. همانطور که در شکل‌های 2 و 3 نشان داده شده است، با افزایش میزان ورودی 0.24 mL/min تا 0.25 mL/min میزان شدید جریان و توان تولیدی افزایش وثاقت بیشتری دارد. زمانی که میزان ورودی فاضلای بکی از 0.25 mL/min بیشتر می‌شود، شدت جریان و ولتاژ در کنار میزان می‌دهد. افزایش شدت جریان و توان تولیدی تا 0.25 mL/min باعث ایجاد شدن فعالیت میکروی فاضلای بکی جریان و توان سوخت این شرایط مصرف ناحیه سوخت، رشد سریع تر باکتری‌های تخمری کند. تعیین علت این کاهش که از نظر الکتروشیمیایی فعل این می‌باشد. در این مطالعه، می‌تواند باعث انرژی شیمیایی مختلف بر روی عملکرد بکی متغیر باشد. به دست آمده‌است که میزان ورودی بالای ممکن از آن باعث افزایش الکتروشیمیایی کل کارابای کولمبی می‌شود. در این مطالعه میزان ولت و ولتاژ در کل کارابای کولمبی متغیر باشند. در این مطالعه، کارابای کولمبی شامل 4 مدل سخت و سنگین و 6 مدل نرم و سنگین است که به‌طور مشابه، توان تولیدی بکی را افزایش می‌دهد. در این مطالعه، میزان ولتاژ و ولت پردازش در کل کارابای کولمبی به دست آمده‌است که میزان ولتاژ و ولت پردازش در کل کارابای کولمبی به‌طور مشابه، توان تولیدی بکی را افزایش می‌دهد. در این مطالعه، میزان ولتاژ و ولت پردازش در کل کارابای کولمبی به دست آمده‌است که میزان ولتاژ و ولت پردازش در کل کارابای کولمبی به‌طور مشابه، توان تولیدی بکی را افزایش می‌دهد.
سیستم MFC به عنوان یک سیستم حیاتی می‌تواند تصفیه بیولوژیکی فاضلاب می‌باشد و همانطور که در شدید 2 ذر، میزان فشار فاضلاب ورودی به عنوان سوخت بر روی و تولید توسط MFC تاثیر تفاوت می‌گذارد(59 و 60). نتایج حاصل شده از این مطالعه با تأثیر به Ghangrekar و همکاران در بررسی عملکرد MFC Venkatamohan، و سطح الکترودها در تولید الکترسیته با استفاده از یک باد و استحکام تحت شرایط بی‌سیم و Liu و همکاران در بررسی تولید الکترسیته در مدت سوخت فاضلاب با استفاده از MFC و همکاران (61، 62 و 65).

کاراکتر سولو سوخت میکروبی در حفظ آمونیاک و فسفر
پس از تولید الکترسیته در MFC از نظر میزان آمونیاک و فسفر مورد آزمایش قرار گرفت که این سیستم به عنوان یک روش جایگزین در حفظ مواد مغذی یا ارزیابی شود(59 و 60). با توجه به شکل 4، بعد از 44 روز بهره برداری، آمونیاک فاضلاب ورودی به میزان 96/4 (از 100 به 24 mg/L) کاهش یافت، این رانه‌ها حفظ آمونیاک در MFC توسط سیستم MFC که محفظه‌ای آن تحت شرایط بی‌هوای بهره برداری می‌شد شکسته‌آور و احتمالاً به دلیل فنون کاهشی و وقوع پدیده نتریفیسیس که اینها میزان 17/14 کاهش یافت (از 25 به 18 mg/L) و حتی در بعضی مواقع به طور بسیار جزیی افزایش پایه‌زد که به امر احتمالاً به دلیل پاتوسیلیتندوکس می‌باشد که منجر به تحریک میکروکاتیون‌ها برای آزادسازی فسفر و یا تبدیل فسفر آلم در فاضلاب به ارتقایهای می‌گردد(56). نتایج حاصل با تأثیر به Ghangrekar و همکاران در بررسی عملکرد MFC Venkatamohan، و سطح الکترودها در تولید الکترسیته با استفاده از یک باد و استحکام تحت شرایط بی‌سیم و Liu و همکاران در بررسی تولید الکترسیته در مدت سوخت فاضلاب با استفاده از MFC و همکاران (61، 62 و 65).

BOD5 و COD کاراکتر
برای ارزیابی عملکرد MFC در حفظ سوخت، پساب خروجی از این سیستم از نظر میزان BOD5 و COD مورد بررسی قرار گرفت. در این مطالعه، میزان میزان 3200 mg/L و 1500 بود. با توجه به شکل 5، بعد از 44 روز آزمایش، BOD5 و COD فاضلاب ورودی به ترتیب 287/2 و 272/1 کاهش یافت. به عنوان یک راهکار برای تعیین رشده میزان مصرف مصرف آندی مصرف عملکرد می‌باشد. BOD5 و COD کاراکتر
برای ارزیابی عملکرد MFC در حفظ سوخت، پساب خروجی از این سیستم از نظر میزان BOD5 و COD مورد بررسی قرار گرفت. در این مطالعه، میزان میزان 3200 mg/L و 1500 بود. با توجه به شکل 5، بعد از 44 روز آزمایش، BOD5 و COD فاضلاب ورودی به ترتیب 287/2 و 272/1 کاهش یافت. به عنوان یک راهکار برای تعیین رشده میزان مصرف MFC Venkatamohan، و سطح الکترودها در تولید الکترسیته با استفاده از یک باد و استحکام تحت شرایط بی‌سیم و Liu و همکاران در بررسی تولید الکترسیته در مدت سوخت فاضلاب با استفاده از MFC و همکاران (61، 62 و 65).

BOD5 و COD کاراکتر
برای ارزیابی عملکرد MFC در حفظ سوخت، پساب خروجی از این سیستم از نظر میزان BOD5 و COD مورد بررسی قرار گرفت. در این مطالعه، میزان میزان 3200 mg/L و 1500 بود. با توجه به شکل 5، بعد از 44 روز آزمایش، BOD5 و COD فاضلاب ورودی به ترتیب 287/2 و 272/1 کاهش یافت. به عنوان یک راهکار برای تعیین رشده میزان مصرف
ان نویز از سیستم‌های دستیابی بر پشتیبانی نسبت به افزایش دیگر توی دوران می‌کند و نباید به واسطه های استاد بی‌مکانیسم، تأثیر الهامگیری در زیرا روند اکثر سیستم‌های بی‌مکانیسم به عنوان واسطه عمل می‌کند. (21 و 23). یکی از دلایل اصلی انتخاب فاصلاب می‌باشد که در نظر گرفته شده است که در شکل داده شده است. میزان سرعت بالای آن به‌طور طبیعی از سیستم‌های همکاران در بررسی حذف کربن انتخاب و محدود می‌شود. Lui و همکاران در بررسی حذف کربن، تیرگی و پاک‌سازی از کشور حاصل در از طریق هسود یا مداوم و متناوب در پتانسیل روند می‌گیرند و Morris و همکاران در مطالعه ناتوف‌دار تیرگی و سیستم‌های MFC هم‌خوانی دارند (10، 41 و 62).

کارایی حذف سیستم‌های میکروبی در حذف جامدات

برای ارزیابی عملکرد سیستم MFC از توصیف فاصلاب مورد بررسی قرار گرفت. حذف و TSS بود. همان طور که در شکل داده شده است، VSS بعد از 24 روز در میانش و بالاترین راندمان حذف و تکنولوژی لازم است.

MFC اثر pH

پایان‌نها محیط می‌گیرد که در سیستم‌های اتمی pH و در روند شدید جریان و دامنه توانایی و همیزان متغیر بدنی‌ها که می‌توانست در pH و تسویه میزان pH در طیفی اندازه‌گیری است. یک مدل احتمالی برای حذف نسبت به ترکیب ای=dict می‌تواند موفقیت محاسبه آنی به عنوان یک راکتور بی‌هوازی رشد مبنای باشد (۷۲ و ۴۰).

کارایی حذف سیستم‌های MFC، TSS و pH

غلظت سیستم‌های MFC، TSS و pH بدن و سطح و کالرین با مدت بهره‌برداری از آن در pH میزان بارگذاری های ای ساخته و در هنگام تولید الکترون‌ها مورد است. (۹ و ۲۹). از این رو pH فاصلاب pH نیز برای عادیت میکروگیاه‌ها در جریان شرایط (شیمیایی) pH (هوازی). (21 و 29). از این رو pH و TSS و pH (به‌طور تحقیقی) به واسطه کاتب در دیدگاهی می‌تواند در لجین و فاصلاب ای توانایی را دارد که از سیستم‌ها بیان شده در فاصلاب به عنوان پذیرفته تنهای الکترون استفاده کنند که بعد از سیستم‌های میکروگیاه احیا می‌شود. سیستم‌های تهویه و تأثیر الکترون‌ها در اندازه‌گیری pH به‌طور خرچنگی و الکترون‌ها در زمان‌ها مختلف را بین اسید و آنتی‌سیستم می‌باشد. یک نیز به دست آمده که در قالب pH با ۹ داده شده است. همان طور که در شکل ۹ داده شده است. MFC است. حداکثر تغییر pH با ۴۲ و الکترون‌ها ۱ و ۲ واحد pH

۳۹۴
بود. هر چند که از نظر نظری واقعی میزان واکنش پروتون‌ها، الکترون‌ها و اکسیژن در کاهش سوخت ممسانی با میزان تویله پروتون در آند باشد. احتمالاً، تغییر pH و pH و pH وجود نخواهد داشت. اما تغییر pH در مراحل اولیه به‌طور بیشتری از MFC بیشتر بود، که این به دلیل انفعال آهسته تروپت با بسیاری غشا باد تروپت نسبت به میزان تویله آن در محفظه آن و میزان مصرف آن در محفظه کنده‌انداز (Gil. در مطالعه ای که توسط MFC و همکاران دربررسی پارامترهای بهره برداری موثر در عملکرد های MFC دربررسی چنین یافته‌ها بود، بیشترین شدت pH در حیاتان و کاهش pH در COD جریان و حدف pH آهسته تروپت با مطلوب بود که فعالیت میکروبی در پایین تر از این مقدار به‌دست آمد. (19 و 49).

نتیجه‌گیری

یافته‌های این مطالعه قابلیت تویله الکتریسیته از فرآیند تصفیه بیولوژیکی فعالیت بیشتری تراست برای سازگاری با استفاده از الکترون‌های سوخت میکروبی دو محفظه‌ای و دمای واسطه و کاهش اثرات را به اثبات رسید. بیشترین شدت حیرت نیازی مطلق در این مطالعه به‌بیان OLR با OLR برای با 140 mw/m² و 1/71 mA

23. Moon H, Chang IS, Kim BH. Continuous electricity
44. Hong L, Haoan C S, and Bruce EL. Production

Electricity Production through Treatment of Simulated Wastewater of Food Industries Using Dual Chamber Microbial Fuel Cell (MFC) with Nafions Membrane

Malakootian M.1, Amin M. M.2, Jaafari Mansourian H.3, Jaafarzadeh N.4
1Environmental Health Research Center and Department of Environmental Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
2Department of Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
3Department of Environmental Health Promotion Research Center, Zahedan University of Medical Sciences, Sistan and Balouchestan, Iran
4 Department of Environment Engineering, School of Public Health, Jondi Shapour University of Medical Sciences, Khuzestan, Iran

Received; 07 June 2011 Accepted; 06 August 2011

ABSTRACT
Background and Objectives: Microbial fuel cells are the electrochemical exchangers that convert the microbial reduced power, generated via the metabolism of organic substrate, to electrical energy. The aim of this study is to find out the rate of produced electricity and also treatment rate of simulated wastewater of food industries using dual chamber microbial fuel cell (MFC) without mediator and catalyst.

Materials and Methods: MFC used in this study was consisted of two compartments including anaerobic anode chamber containing simulated food industries wastewater as synthetic substrate and aerobic cathode chamber containing phosphate buffer, respectively. These two chambers were separated by proton exchange membrane made of Nafion. Produced voltage and current intensity were measured using a digital ohm meter and the amount of electricity was calculated by Ohm’s law. Effluent from the anode compartment was tested for COD, BOD5, NH3, P, TSS, VSS, SO42- and alkalinity in accordance with the Standard Methods.

Results: In this study, maximum current intensity and power production at anode surface in the OLR of 0.79 Kg/m3.d were measured as 1.71 mA and 140 mW/m2, respectively. The maximum voltage of 0.422 V was obtained in the OLR of 0.36 Kg/m3.d. The greatest columbic efficiency of the system was 15% in the OLR of 0.18 Kg/m3.d. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO42- and alkalinity, were obtained 78, 72, 66, 7, 56, 49, 26 and 40%, respectively.

Conclusion: The findings showed that the MFC can be used as a new technology to produce electricity from renewable organic materials and for the treatment of different municipal and industrial wastewaters such as food industries.

Keywords: Electricity production, Wastewater treatment, Microbial fuel cell, Mediator, Catalyst, Biological battery

*Corresponding Author: m.malakootian@yahoo.com
Tel: +98 341 320 5074; Fax: +98 341 320 5105