تأثیر پیش‌تصنیف لجن فعال دفعی با ازن بر کارآیی فراخوان هضم هوازی

دکتر غلامرضا موسوی؛ اکرم جمال؛ دکتر حسن اسکندری

moussavi@modares.ac.ir
نوبتده: مهر، نقاطع بزرگراه جلال آل احمد و شهردیجان، دانشگاه تربیت مدرس، دانشکده علوم پزشکی.

چکیده
زمینه وهدف: متدال برین روش تنبیه لجن های بیولوژیکی مزار، هضم هوازی می‌باشد که به دلیل پاک بودن زمان هوازی، این تاسیسات برگزیده و هزینه سرمایه‌گذاری زیادی را به سیستم هضم می‌کند. به دلیل کمتر اکسپرسیون بالای ارز، انرژی افزارهای این ماده به لجن باعث پایانی و تاسیسات جامعات لجن و تسریع در عمل تنبیه و در نتیجه کاهش اندازه و هزینه استعداد تصنیفی لجن می‌گردد. بنابراین دراین تحقیق، فراخوان تلقیحی پیش روش بررسی: دراین پژوهش از یک سیستم آزمایشگاهی شامل زمانهای لجن، اکثریت از این با حجم 2 لیتر و یک راکتور هوازی استفاده کرده‌اند.

جوانه‌ها: نتایج حاصل از پژوهش نشان داد که میزان کاهش جامعات فرار پس از کامپیوتر 10 روز از هوازی لجن بدون پیش‌تصنیف با ازن هم‌بایی برای ارز (VS) در این زمان کاهش 28 درصد (EPA) و برای ارز (TS) با هم‌بایی برای ارز (VS) و برای ارز (TS) با بیش از 28 درصد و استانداردهای EPA یا از این نظر برآورد می‌کنند. بنابراین زمان هضم که در سیستم های متدال هضم هوازی 10-30 وزن است بسیار پس از پیش‌تصنیف با ازن به 3 روز کاهش می‌یابد. همچنین این زمان به لجن تا حد زیادی باعث بهبود پایداری ته نشینی لجن و کاهش حجم لجن دفعی نهایی می‌شود.

نتیجه‌گیری: پیش از این از لجن با مقادیر کم ازن به دلیل واپسینج جامعات می‌تواند راه اندازی هضم هوازی با میزان زیادی افزایش دهد که این امر باعث کاهش اندازه تاسیسات هوازی مورد نیاز شده و هزینه‌های سرمایه‌گذاری و تا حدودی بهره برداری را نیز می‌تواند کاهش دهد.

ویژگی‌های لجین: تصنیف فاضلاب، لجن فعال دفعی، هضم هوازی، پیش‌تصنیف، ازن...
تأثیر پیش تصمیم لینج فعال

مقدمه

تصنیف بیولوژیکی یکی از مهم‌ترین رسانه‌های تصنیف فصلاب می‌باشد. فرآیند لینج فعال به عنوان یک تکنولوژی بیولوژیکی برای تصنیف گیاه‌های سبزی از فصلاب‌ها به کار می‌رود و به ترتیب از 90 درصد تصنیف خانه‌های فصلاب شهری از آن به عنوان قسمت اصلی فرآیند تصنیف استفاده می‌کند(2). در طی این فرآیند حجم زبانی لینج تولید می‌شود که هزینه از آن را باید منظور تنظیم خلق بوده که جریان بیماری در حوضه هوازی، حذف می‌کند(3). مقدار لینج تولیدی در تصنیف خانه‌های فصلاب تقریباً 1 درصد فصلاب تصنیف شده است(4). لینج مازاد تولیدی در فرآیند تصنیف بیولوژیکی جزو مواد زائد جامد تانیو که باید به روش ایمن و مقرون به صرفه دفع شود(5). با پرداختن به این حالیان، فصلاب تغییرات در فصلاب‌هایی که در نظر گرفته شده‌اند، به‌دست می‌آید که هزینه‌های سرمایه‌گذاری اولیه و تا 60 درصد هزینه راهبردی تصنیف خانه‌های فصلاب را به خود اختصاص می‌دهد(6)،

به‌طور کلی از مراحل اصلی تصنیف لینج تثبیت آن می‌باشد. اهداف اصلی تثبیت لینج کاهش بهره‌های آزار دهنده، کاهش عوامل بیماری و کاهش نیاز‌های فیزیولوژیکی لینج می‌باشد. موافقین در رسانه‌های منابع به‌درجه اندیده بستگی به میزان تثبیت مواد آلی دارد(6). سپس تثبیت لینج بیولوژیکی سازند، هضم هوازی می‌باشد که جعبه‌ی از تثبیت لینج به وسیله هوازی دیگر و تخریب جامدات گازی. به دلیل بی‌پردازه زمان هوازی با زمان‌های هیدرولوژیکی، انجام‌آمده این تثبیت‌سازگاری بوده و هزینه‌سازی گذراندی را به سیستم تحمیلی می‌کند. لذا هر سیستمی یا فرآیند که بتواند زمان هوازی را کاهش دهد می‌تواند در کاهش اندیشه تثبیت تصنیف لینج و در نتیجه هزینه سیستم بن‌باشد(7).

به‌طور کلی از این نکات، لینج اصلی به‌عنوان یک پایه‌بنا از جامدات موجود در لینج تخریبی و به مواد قابل تجزیه سیستمیک، تبدیل شوند(7). برخی از فرآیندها از قبیل تصنیف حرارتی(8).

2 مواد و روش کار

طرح شیمیایی سیستم آزمایشگاهی مورد استفاده در شکل 1 نشان داده شده است. راکتور از زیر مورد استفاده در این تحقیق از جنس شیشه و استوانه‌ای شکل با جمجمه 2 لیتر بوده و به درجه معمولی از خروجی کار آن از سیستم، کاملاً آب‌بند و هوا بند گردید. برای هشیار مخازن از یک دیفیوزور هوا در کمرنگی از هم که به سیستم مورد استاده 2 مدل ARDA مدل COG-0M سری با نشان تجاری شد. نگهداری از درکار

A

ورودی به راکتور، میزان گاز ورودی و فشار آن به 1 گیج/کیلوگرم از فاز گازی 20 رابطه 19 گیج/۱ لیتر در دقیقه. همچنین از اکسیژن خالص برای تولید از انتقال السا شده. نتایج آن در فاز گازی، قبل و بعد از واکنش با لینج به میدان هوازی.

90
نحویت لجن مورد مطالعه قرار گرفت. آزمایشات در چند مرحله مجرای ذکر داده‌ها نشان می‌دهد که در هر مرحله کلیه آزمایش‌ها به علت توزیع ترکات و میانگین سه بار تكرار هر پارامتر به عنوان متغیر آن، گزارش گردید. سپس لجن از زنی شده در هر کدام از مرحل‌ها، به صورت مجزا و به مدت 10 روز هوازی و در فواصل زمانی مشخص (9:00 و 10:00) به مکان بررسی تغییرات و روند نسبی لجن انتخاب شدند. همچنین به مکان بررسی نسبی نسبت به زنی، بیشتر شوازی‌های لجن، هضم هوازی لجن به دلیل بازی عضوی و روند نسبی لجن آن، انتخاب گرفت. مهم‌ترین پارامترهایی که قبل و بعد از زنی بیان گردیدند شامل: (Total Suspended Solids) TSS، (Chemical Oxygen Demand) COD و (Solids) VS (Heterotrophic Plate Count) HPC، (هیتروتروپ هیپاکتی) هدف بررسی مقدار مذکوری و مطالعه کارآیی از زنی در نسبت آن گونه لجن ها از لجن تغییر می‌کند. تصمیم‌گیری خالص لحن‌های فعال یا فعال‌لاک‌های فعال‌شناسان که سپس‌ری آن از نوع لجن فعال با مقداری که استفاده شد. نمونه برداری از قسمت وردی لجن برگشته به حیطه‌های فعال عمده در قسمت اولیه نتیجه‌گیری از انجام گرفت. سپس در هر مرحله راکتور با 1 نریز لجن فعال یا راکتور و از زنی آغاز شد. در این پژوهش، میزان تغییرات در این فاصله در این دو دسته از دو گروه همنوازی و میزان تغییرات در این فاصله در دو گروه همنوازی و میزان تغییرات در این فاصله در دو گروه HPC.

جدول 1: ویژگی‌های لجن فعال دمی مورد مطالعه

<table>
<thead>
<tr>
<th>پارامتر مورد سنجش</th>
<th>میانگین مقداری</th>
<th>واحد</th>
<th>پارامتر مورد سنجش</th>
<th>میانگین مقداری</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>5491</td>
<td>mg/L</td>
<td>VS</td>
<td>9430</td>
<td>mg/L</td>
</tr>
<tr>
<td>VSS</td>
<td>5010</td>
<td>mg/L</td>
<td>SCOD</td>
<td>8794</td>
<td>mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>1448</td>
<td>mg/L</td>
<td>Setturable Solids</td>
<td>11351</td>
<td>mg/L</td>
</tr>
<tr>
<td>SS</td>
<td>949</td>
<td>ml/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal coliform</td>
<td>326100</td>
<td>MPN/g TS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 1: طرح شماتیک سیستم آزمایشی مورد استفاده

تعیین میزان از مصرف‌های اندام‌های گیری شد و روان‌دست انتقال و مصرف از بین هر 49 درصد بود. به همراه انتقاد به گیری غلظت لجن از استفاده فاز را گذاشته در راه انتقال و مقادیر آن، بیشتری استفاده گردید. از این نسبت، لحن به یک راکتور هوازی متقل گردید.

به منظور بررسی وضعیت نسبی لجن بیولوژیکی و مطالعه کارآیی از زنی در نسبت آن گونه لجن‌ها از لجن تغییر می‌کند. تصمیم‌گیری خالص لحن‌های فعال یا فعال‌پذیر از نوع لجن فعال با مقداری که استفاده شد. نمونه برداری از قسمت وردی لجن برگشته به حیطه‌های فعال عمده در قسمت اولیه نتیجه‌گیری از انجام گرفت. سپسدر هر مرحله راکتور با 1 نریز لجن فعال یا راکتور و از زنی آغاز شد. در این پژوهش، میزان تغییرات در این فاصله در این دو گروه همنوازی و میزان تغییرات در این فاصله در دو گروه HPC.
شدن مواد آلی موجود در آنها به داخل مایع لجن می‌شود (21). در واقع با خنثی‌سازی TSS به TDS در نوار پخشی از عوامل TDS به TSS با استفاده از فرآیند هیدروژن‌سازی (Park 2003)، کاهش می‌یابد. این کاهش، نتیجه تصفیه لجن در مقدار معقید روی تیپ بایکوئیک از سهولت دسترسی میکروکاتیزیم به داخل هوازی بعدی است. بنابراین از نظر تغییرات در وابشیانسی لجن بعد از فرآیندهای تصفیه و تغییر نسبت واباشیانسی لجن، باید شکل جزئی تصفیه به تقلید بیولوژیکی مواد دارای آبیات و پیش‌ای می‌باشد (7). در این تحقیق از رابطه 1 برابر تغییر نسبت واباشیانسی جامدسته استفاده شده است.

$$D_{\text{tran}} \text{ Ratio}(\%) = \frac{(SCOD_{\text{i}} - SCOD_{\text{f}})}{(TCOD_{\text{i}} - TCOD_{\text{f}})} \times \frac{TCOD_{\text{i}}}{TCOD_{\text{f}}}$$

در این رابطه، تَنیسید به ترتیب بیان کننده لجن تصفیه به SCOD و TCOD شده و تغییر نسبت می‌باشد. همچنین ترتیب بیناگر کل و COD TCD به ترتیب بیانگر کل و COD TCD به ترتیب بیانگر کل و COD TCD. در این تحقیق در دوره از تغییر نسبت واباشیانسی مواد آلی لجن را نشان می‌دهد. این نسبت در دوره از 0/125 گیلوگرم TSS در 0/2 باربر/7/44 است. در این فرآیند از TSS به دلیل افزایش تغییرات دیواره سلولی باعث تغییر سلول باکتری‌های آنها و لز‌شن آنها و سپس خاصیت تغییرات با دیگر هدایت تغییرات را در پی دارد.
همان طور که مشاهده می‌شود از این زنی به لحاظ باعث افزایش COD محدود می‌شود. علت اصلی افزایش COD در لحاظ اینکه هزینه لازم برای شدن سلولار و آزاد شدن مواد آلی داخل سلولی است. درجه لازم سلع به غلظت از و مدت زمان این سبک کار دارد.

این اندازه آزمایش محقق را در دو مرحله انجام داد. نتایج این اشفان نشان داد که محلول فیلتری شده بعد از این زنی هیچ گونه افزایش نداشت است. در حالی که در محلول صاف نشده بعد از این زنی COD به میزان قابل توجهی افزایش یافت است. (۲۳).

اثر پیش هزینه با این بر فرآیند حضور

واپاسی و مددی سازی چند: هواهادی به لحاظ این زنی شده نسبت به لحاظ باعث افزایش راندمان کاهش چندرضا. مهم جرم و حجم لحاظ می‌شود. مقدار جامدات فرار در از شاخص های پایداری لحاظ بوده و میزان کاهش VS -2 در تأثیر یک فرابند در ثبت هم و کاهش جذب ناقلین افزایش ۳۸ درصد افزایش که است. (۲۳). همان طور که در شکل ۲ مشهد است. روند مطابق سازی و ثبت مواد آلی در لحاظ این زنی شده با دو مکان های مختلف از نسبت به لحاظ خام در طی دوره هم هوازی تا روز ششم افزایش قابل ملاحظه ای دارد. است. یک شرک اول هوازی لحاظ این زنی کاهش و هم‌زمان به کاهش چندرضا. افزایش نتیجه و شدید و هریم های سرمایه‌گذاری و تا حدی بدون بهره برداری لاژی کاهش می‌دهد. قابل ذکر است که به ادامه هوازی پیش از ۶ روز به همراه این زنی. به لحاظ ۲۳ هفته، حدف کمی که توان افزایش رشد می‌کنند. به روش مواد آلی محلول ناشی از تحریک جامدات بیولوژیکی و با تابخ نمونه و در نتیجه افزایش غلظت جامدات

برای تکثیر

table 3:

<table>
<thead>
<tr>
<th>VS</th>
<th>TSS</th>
<th>COD</th>
<th>0.25g O3/g TS</th>
<th>0.5 g O3/g TS</th>
<th>2 g O3/g TS</th>
<th>1 g O3/g TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>200</td>
<td>0.25</td>
<td>0.5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

شکل ۳:

نحوه افزایش COD در روز ۲۰.

شاخص این به لحاظ این زنی شده. شرکت ۴ می‌توان تغییرات لحاظ خام و پیش از این زنی شده را ظد نیز این فراموشی نشان می‌دهد. غلظت این عامل در لحاظ نشانه جرم جامدات موجود در آن است. در نتیجه هر چه فراست بوده است.
هل آن عامل را بیشتر کاهش دهد مراحل بعدی مدیریت لجن بهتر و مؤثرتر انجام می‌شود. همانطور که مشاهده می‌شود، میزان کاهش TSS در هضم هوازی لجن بودن پیش تصفیه، بعد از روز دهم ۲۷ درصد می‌باشد. در حالی که این مقادیر در لجن تصفیه شده با دوز انتخابی ۰/۲۵ g O3/g TS در پایان روز اول هوازی ۲۰۰/۴ درصد می‌باشد. بر اساس این نتایج کاهش سرمایه در حجم لجن در پایان روز اول هوازی تقریباً ۲ برابر این مقادیر در روز دهم هوازی لجن خام است.

شکل ۳: اثر هوازی بر میزان کاهش TSS لجن خام و ازن زنی شده با دوزهای مختلف انتخابی

همچنین میزان کاهش TSS در لجن پیش تصفیه شده با دوز ۰/۲۵ g O3/g TS از روز ۳ تا ۸ روز از هوازی به ترتیب به ۵۵٪ و ۵۹٪ درصد و در دور از این تریمبه به ترتیب به ۵۹٪ و ۵۷٪ درصد کاهش پایه‌که نتایج قابل ملاحظه‌ای بود. این نتایج نشان می‌دهد که پیش تصفیه و پس از هوازی برای دستیابی به کاهش ۲۸ درصد جامدات فرا مریر شده از سوی EPA باید از تصفیه جرم لجن کاهش می‌باشد که این امر باعث کاهش تست‌های ای بهتری و دفع و در تبییه کاهش هزینه تصفیه لجن می‌گردد. و همکاران (۲۰۰۳) نیز میزان کاهش TSS پس از هوازی به لجن زنی شده با دوز ۲۵۰ mg O3/g TS تا ۳۰ نا ۲۰ درصد گزارش کرده‌اند. همچنین Hwang و همکاران (۲۰۰۴) نیز نشان دادند که این مقادیر در لجن خام بدون پیش تصفیه پس از فاصله ۱۰ روز از فرآیند هضم ۲۰٪ درصد می‌باشد. بنابر

شکل ۲: اثر هوازی بر میزان کاهش TSS لجن خام و ازن زنی شده با دوزهای مختلف انتخابی

همچنین وجود فیلامنتوس ها در لجن باعث کاهش میزان می‌باشد که این امر باعث کاهش تست‌های ای بهتری و دفع و در تبییه کاهش هزینه تصفیه توسط می‌گردد. و همکاران (۲۰۰۳) نیز میزان کاهش TSS پس از هوازی به لجن زنی شده با دوز ۲۵۰ mg O3/g TS تا ۳۰ نا ۲۰ درصد گزارش کرده‌اند. همچنین Hwang و همکاران (۲۰۰۴) نیز نشان دادند که این مقادیر در لجن خام بدون پیش تصفیه پس از فاصله ۱۰ روز از فرآیند هضم ۲۰٪ درصد می‌باشد. بنابر

شکل ۲: اثر هوازی بر میزان کاهش TSS لجن خام و ازن زنی شده با دوزهای مختلف انتخابی

همچنین وجود فیلامنتوس ها در لجن باعث کاهش میزان می‌باشد که این امر باعث کاهش تست‌های ای بهتری و دفع و در تبییه کاهش هزینه تصفیه توسط می‌گردد. و همکاران (۲۰۰۳) نیز میزان کاهش TSS پس از هوازی به لجن زنی شده با دوز ۲۵۰ mg O3/g TS تا ۳۰ نا ۲۰ درصد گزارش کرده‌اند. همچنین Hwang و همکاران (۲۰۰۴) نیز نشان دادند که این مقادیر در لجن خام بدون پیش تصفیه پس از فاصله ۱۰ روز از فرآیند هضم ۲۰٪ درصد می‌باشد. بنابر
نتیجه‌گیری

در این تحقیق تأثیر بیش تصفیه لجن با ارzan بر از افزایش راندمان فرآیند هضم هوازی لجن فاضلاب شهری بررسی شد. میزان کاهش جامدات فرآیند بر اثر کاهش ۱۰ روز از هوازی لجن، بدون بیش تصفیه با از هنوز قادر به این مقدار است. در این مطالعه در مورد کاهش جامدات فرآیند (VS) و نتیجه لجن نیز باشند. در حالی که در بیش تصفیه با دوز ۲۵ گیلدریگ TD، در روز ششم هضم هوازی و در مورد کاهش ۱۵ گیلدریگ TD، در روز سوم هضم هوازی، درصد کاهش بیش از ۹۳ درصد بوده است که استانداردهای EPA R. این نظر برآورده می‌کند و در دوره بهبود بهبوده‌اند. همچنین این ارزان زنی به لجن تا حد زیادی باعث شده همچنین لجن و کاهش حجم لجن دفعه نهایی به حضور در دوره از کمتر از ۱ گیلدریگ TD. لذا می‌توان نتیجه گیری کرد که بیش از ارزان زنی لجن با مقاشر کم از نظر والانشی جامدات می‌تواند راندمان هضم هوازی را تا حد زیادی افزایش دهد و زمان هضم که در سیستم‌های متدول هضم هوازی ۵۰۰ روز است، را به مقدار زیادی کاهش دهد که این بودن باعث کاهش آنتی‌زاویت و هوازی مورد نیاز می‌شود و هزینه سرمایه‌گذاری در طول مدت زمانی که بیشتر استفاده مجدد از لجن باشد می‌توان از ارزان از زنی نیز بیش (BS) استفاده‌ای بسیار ارزیابی با دوره‌های از ارزان برای کاهش دانشی باکتری های و رشد ریسید به استانداردهای مورد شرایط کیفیتی استفاده نمود.

تشکرو قدردانی

نویسندگان از انتشار تریبیس مدرس به دلیل تأثیر هزینه و تجهیزات لازم در انتشار این پژوهش کمال تشکر و قدردانی را دارند. همچنین از همکاران صمیمانه شرکت شکوفا توجه به فاکتور انجام و در اختیار گذاشته تولید از صمیمانه سیاست‌گذاری.

Effect of Waste Activated Sludge Pretreatment with Ozone on the Performance of Aerobic Digestion Process

*moussavi G.1, Jamal A.2, Asilian H.1
1Department of Environmental and Occupational Health, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2Department of Environmental Health, Urmia University of Medical Sciences

Received 2 December 2008; Accepted 1 February 2009

ABSTRACT

Background and Objectives: A conventional treatment to stabilize the excess activated sludge is the aerobic digestion process but due to long aeration time, it requires large equipments as well as high investment cost. Because of high oxidation potential of ozone, sludge ozonation enhances stabilization rate and reduces sludge treatment equipment size and cost. Therefore, in this study, the combination of pretreatment with ozone and aerobic digestion processes were investigated.

Materials and Methods: The experimental set-up consisted of an ozone generator and ozonation reactor with the total volume of 2 L. Removal percentages of TSS, VS, total and soluble COD, HPC, fecal coliform and settable solids were measured in integrated process compared to the single ones.

Results: The results of this research indicated that the aerobic digestion of waste activated sludge during 10 days could reduce 38% of volatile solids and thus obtaining the EPA standard. Also, the results of combined ozonation and aerobic digestion revealed that the pre-ozonation at 0.25 g O_3/g TS or 0.5 g O_3/g TS with 6 or 3 days aeration, respectively, could achieve 38% reduction in VS and hence the requirement set by EPA. Therefore, integration of pre-ozonation with aerobic digestion can significantly reduce the digestion time to attain the standards.

Conclusion: The sludge pre-ozonation with low dose of ozone due to solids disintegration can enhance the efficiency of aerobic digestion in waste activated sludge stabilization, and consequently decrease size of equipments, air requirement, investment and probably operation cost.

Key words: Wastewater treatment, waste activated sludge, aerobic digestion, pretreatment, ozone.

*Corresponding Author: moussavi@modares.ac.ir
Tel: +98 21 82883827 Fax:+98 21 82883825