Volume 7, Issue 3 (5-2014)                   ijhe 2014, 7(3): 327-338 | Back to browse issues page


XML Persian Abstract Print


1- Professor of Department of Environmental Health Engineering, Faculty of Health, Tehran University of Medical Sciences, Tehran, Iran
2- Professor of Department of Environmental Health Engineering, Faculty of Health, Iran University of Medical Sciences, Tehran, Iran
3- Assistant Professor of Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran , akulivand@yahoo.com
Abstract:   (4160 Views)

Background & Objectives: Remaining crude oil in storage tanks lead to accumulation of oily sludge at the bottom of the tank, which should be treated and disposed of in a suitable manner. The aim of the present study was to investigate the efficiency of chemical oxidation using H2O2 and Fenton’s reagent in removal of Total Petroleum Hydrocarbons (TPH) from bottom sludge of crude oil storage tanks. Materials & methods: In this experimental study, hydrogen peroxide and Fenton’s reagent were added to the sludge in six concentrations including 2, 5, 10, 15, 20, and 30% (w w-1) and TPH was measured for a period of 24 and 48 h of reaction time. The oxidants were added in a single and stepwise addition way, both to the pristine and saturated sludge. The elemental analysis of sludge and TPH measurement were carried out using ICP and TNRCC methods respectively. Results: The mean TPH removal of 2, 5, 10, 15, 20, and 30% oxidant concentrations were 1.55, 9.03, 23.85, 33.97, 41.23, and 53.03%, respectively. The highest removal efficiency was achieved in stepwise addition to the saturated sludge. Increasing oxidation time from 24 to 48 h had a little effect on increase in TPH removal. Moreover, the removal efficiency of H2O2 and Fenton was nearly similar. Conclusions: Mere application of chemical oxidation is not capable of complete treatment of the sludge but it is an effective process as a pre-treatment step for decreasing toxicity and increasing its biodegradability.

Full-Text [PDF 760 kb]   (1427 Downloads)    
Type of Study: Research | Subject: General
Received: 2015/04/25 | Accepted: 2015/04/25 | Published: 2015/04/25