بررسی حذف باکتری اشرشیا کلی از آب آلوده به روش الکترولیز
عباس رضایی، گیتی کاشی، احمد جنیدی جعفری، علیرضا ختایی
نویسه‌نامه: تهران، پژوهشگاه جلال آل چمی دانشگاه تربیت مدرس، دانشکده علوم پزشکی، گروه بهداشت محیط
دریافت: 59/11/08
پذیرش: 59/11/08
چکیده
زمینه و هدف: روش‌های فیزیکی و شیمیایی متناول در کنترل آلودگی آب، استفاده از الکترودیک آب، استفاده از الکترودیک آب، کلرژن و انرژی‌های انرژی‌زایی در حال اجرای کاربردی - تحلیلی بررسی حذف باکتری اشرشیا کلی (اشترشیا آلودگی میکروبی آب) از آب آشامیدنی به روش الکترولیز است.
روش پژوهشی: نمونه آب آلوده با رنگ‌های بازیابی آلودگی آب در میلی لیتر آب آشامیدنی تهیه گردید. آلودگی به باکتری وارد راکتور الکترولیزی شد و کارایی حذف باکتری در شرایط مختلف pH (8.7, 9.3, 10.7 و 10.9) تعداد باکتری (100, 1000 و 10,000 عدد در میلی لیتر)، وزن (1, 5 و 10 ساعت) و ولتاژ (11 و 20 ولت) مورد بررسی قرار گرفت.
نتیجه‌گیری: تحقیق نشان داد که ولتاژ و مدت زمان الکترولیز به‌طور مؤثر در حذف باکتری اشرشیا کلی از آب آلوده است. با کاهش تعداد باکتری اشرشیا کلی از آب آلوده به افزایش ولتاژ و مدت زمان الکترولیز مشاهده گردید.
واژگان کلیدی: باکتری، اشرشیا کلی، الکترولیز، گندزدایی، آب آلوده

1- دکترای میکروب شناسی، دانشیار دانشکده علوم پزشکی، دانشگاه تربیت مدرس تهران
2- دانشجوی دکترای بهداشت محیط دانشگاه تربیت مدرس
3- دکترای بهداشت حرفه ای، دانشیار دانشکده بهداشت، دانشگاه علوم پزشکی تهران
4- دکترای شیمی کاربردی، استادیار دانشکده شیمی، گروه شیمی کاربردی دانشگاه تربیت مدرس تهران

Downloaded from ijhe.tums.ac.ir at 14:16 IST on Saturday December 29th 2018
مقدمه

آپ غيربهداشتی عامل اصلی مرگ و میر کودکان در کشورهای توسعه پذیر محسوب می شود. (۱) گندزدایی آپ به کاهش مرگ و میر جهانی و محدود کردن بیماری‌های خطرناک از قبیل وبا و تیف و قدیمی متجر می گردد. (۲) مدل ترین روش‌های حذف میکروارگانیسم‌های تیف بیماری‌ها، گندزدایی فیزیکی و شیمیایی آپ، جداسازی بیماری‌های نورال، و یونیا از این نظر به زیاده‌نگار و گنبد، نهایی نظر می‌رفته و بی‌روی مطمئن، تولید فرآورده های جانبی ناشی از گندزدایی نظر تری هالومن با سرطان کاکل؛ اما با هر بیهوشی‌ی، کاکل‌ها و کاکل‌ها به آپ و اکسپیش ناخواسته عامل‌های دیگر واقعی، به علت روش‌های الکتروشیمیایی، نهایی نظر می‌باید و روش‌هایی که روغن را به کاهش کند را بین کش به علت الکتروشیمیایی، محدودیت‌ها گنبد و عواملی از قبیل، کاکل گنبد اکسیدنا، گندزدایی کاکل‌ها و توسعه کاکل آپ‌زه روش الکتروشیمیایی مورد توجه قرار گرفته است. در روش الکتروشیمیایی میکروارگانیسم‌ها بطور میانی برای این روش نظر گندزدایی الکتروشیمیایی، گندزدایی الکتروشیمیایی، اکسیداسیون آپ؛ آپ کش و آپ فعال شده به روش الکتروشیمیایی مطرح گردیده است. (۵-۷) اتفاق افتادن ضرر گندزدایی الکتروشیمیایی، افتاده است تولید سفارده های جانی مفل، فلاپتی اطیافان در گندزدایی آپ آسانبدی، آپ استخر گندزدایی مفصل گنبد از جمله مرایی گندزدایی آپ به روش الکتروشیمیایی است. جراین الکتروشیمیایی به تولید گندزدایی اتفاک گندزدایی به کاکل گنبد از الکتروشیمیایی در آپ نظر از و گندزدایی الکتروشیمیایی، میکروارگانیسم‌های تیف نمونه می‌گردد (۲) غیرفعال سازی ارگانیسم به علت تولید کاکل آپ و دی اکسیدایی کاکل در اثر و اکسپیش الکتروشیمیایی مرد مسولی الکتروشیمیایی است. باکتری آپ کاکل گنبد آپ، گندزداییی، الکتروشیمیایی، الکتروشیمیایی بحث و اکسیدازی و انتقال به عنوان اکسیدازی گیاپیکسی ۲۰۲۶

دانشگاه علوم پزشکی امام علی (عج) بم تهران

 dragons.ac.ir at 14:16 IST on Saturday December 29th 2018
در لوله‌های مختلف با کدورت ایجاد شدند، توسط تعداد نمونه‌های هم‌سطح شده و مورد استفاده شده استیل سنگولیتریک بک درصد و کلرور باریم دو آبناب (BaCl₂.2H₂O) به مقدار اسلاید استاد در دو درصد بود. لوله استادنارد 5/5 مک فارلنگ در این لوله در طول هر 60 ثانیه به انداره گیری گردید. در مقاله همکارانه با مواد سولف‌دار (UNICO) به سبب اتصال وسیله اسپیکتریومتر (مدل BHI) و سولف‌دار می‌باشد. سپس با اندازه‌گیری نقاط مثبتهای پذیرایی انجام شد. نمونه‌های باکتری در محیط کشت به اکسیژن وجود می‌دارند. کشت در محیط شیم‌کیفی با سرعت BHI 120 rpm پس از 12 ساعت که باکتری‌ها در داخل محیط کشت رشد کردند، سولف‌داریون باکتری جهت نهایی کشت نازه در محیط کشت آگر مغذی تلقیح و کلیه‌ای باکتری دور از رشد. جهت انجماد خطای گزمایش مورد استفاده قرار گرفت. فرمول دو نمونه می‌باشد. در مورد هر 3 هزار دایر محافظت در حالت هسته‌ای کناره کرده و حجم آب آورده ورودی pH تنظیم محلول اسید کلریدیک و سود 1 نرمال جهت تنظیم کردن مورد استفاده قرار گرفتند (2).

مواد و روش‌ها

روش‌ها

بحث به عنوان باکتری گرم منفی شاخه‌ای آلودگی آب استفاده شده. باکتری مذکور در مطالعات حذف باکتری مورد استفاده قرار گرفت. سولف‌داریون باکتری لیفولایزر مخصوصاً چند میلی‌لیتر از محیط کشت استریل مغذی و قلب آگر (BHI) گردید. چند میلی‌لیتر از سولف‌داریون باکتری به محیط کشت تلقیح و جهت کشت به اکسیژن وجود می‌دارند. کشت در محیط شیم‌کیفی با سرعت BHI 120 rpm پس از 12 ساعت که باکتری‌ها در داخل محیط کشت رشد کردند، سولف‌داریون باکتری جهت نهایی کشت نازه در محیط کشت آگر مغذی تلقیح و کلیه‌ای باکتری دور از رشد. جهت انجماد خطای گزمایش مورد استفاده قرار گرفت. فرمول دو نمونه می‌باشد. در مورد هر 3 هزار دایر محافظت در حالت هسته‌ای کناره کرده و حجم آب آورده ورودی pH تنظیم محلول اسید کلریدیک و سود 1 نرمال جهت تنظیم کردن مورد استفاده قرار گرفتند (2).

توجه به لوله‌های استادنارد مک فارلنگ جهت بررسی راندمان حذف باکتری توسط سیستم، غلظت باکتری اشیآی‌کا کلی در دارای 10 و 100 که در میلی لیتر نهایی گردید. به منظور دستیابی به تعداد باکتری‌های مورد نظر از لوله‌های استادنارد مک فارلنگ استفاده شد که دارای نسبت های مختلف و ترکیب اسیدسولف‌داری و کلرورباریوم بودند. کلرور باریم در حضور Solecul فکتور فیزیکی ایجاد می‌کند که شدت کدورت ایجاد شده میزان سولف‌دار و کلرور باریم. بستگی دارد. از این روش کدورت ایجاد شده
سنجش عملکرد فرآیند

به منظور ارزیابی تأثیر جریان مستقیم بین فرآیند گندزایی، نمونه‌ها pH در (۶-۸) و (۵-۷) تعادل بکاری (۱۰۰ و ۲۰۰ عدد در میلی‌لیتر). زمان (۵۰۰ و ۲۰۰ دقیقه) فاصله‌ای بین الکترودها (۵-۰ و در واقعیت مختلط (۴۰۰-۱۰۰۰) ولت) مناسب‌تر با جریان الکترودیکی (۵۰ و ۴۰۰ میلی آمپرس تا الکترولیز قرار گرفته. کلیه آزمایش‌ها در دمای آزمایشگاه (۲۰ درجه سانتی‌گراد) انجام شد. همزمان مغناطیس (یک واژه) و نمونه آب آلوه مورد استفاده قرار گرفت. برای تنظیم pH از دستگاه pH استفاده گردید. راندمان حذف بکاری این تحقیق (Hach تحلیل‌کاربردی از راههای زیست‌محایی شد (۱۲) درصد حذف اثری مرحله کی (B) به ترتیب تعادل بکاری این تحقیق در زمان ۱۰ و ۱۰۰ میلی‌لیتر قرار گرفته به مدت ۱ دقیقه آب کشی می‌شود.

یافته‌ها

نتایج حاصل از الکترولیز بروی گندزایی آب در حالی مختل (نیاز به استفاده، زمان الکترولیز، فاصله بین الکترودها و ولتاژ) در بند جدول (۱) است. اثر بکاربردی بر روی کارایی حذف بکاری اشکال کی اثری بر روی کارایی الکترودیکی تعادل بکاری اشکال کی از ۱۰۰ به ۲۰۰ عدد در میلی‌لیتر کاهش می‌یابد (شکل ۲). طبق استانداردهای جهانی غلظت محلی نسبی اشکال کی از ۱۰۰ میلی‌لیتر می‌باشد. هنگامی که نشان داده که الکترودیکی تعادل بکاری اشکال کی از ۱۰۰ به ۲۰۰ عدد در میلی‌لیتر قرار گرفته. کلیه آزمایش‌ها در دمای آزمایشگاه (۲۰ درجه سانتی‌گراد) انجام شد. همزمان مغناطیس (یک واژه) و نمونه آب آلوه مورد استفاده قرار گرفت. برای تنظیم pH از دستگاه pH استفاده گردید. راندمان حذف بکاری این تحقیق (Hach تحلیل‌کاربردی از راههای زیست‌محایی شد (۱۲) درصد حذف اثری مرحله کی (B) به ترتیب تعادل بکاری این تحقیق در زمان ۱۰ و ۱۰۰ میلی‌لیتر قرار گرفته به مدت ۱ دقیقه آب کشی می‌شود.

ویژگی‌های

- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی
- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی
- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی

در این تحقیق راندمان حذف بکاری بکاری این تحقیق در زمان ۱۰ و ۱۰۰ میلی‌لیتر قرار گرفته. کلیه آزمایش‌ها در دمای آزمایشگاه (۲۰ درجه سانتی‌گراد) انجام شد. همزمان مغناطیس (یک واژه) و نمونه آب آلوه مورد استفاده قرار گرفت. برای تنظیم pH از دستگاه pH استفاده گردید. راندمان حذف بکاری این تحقیق (Hach تحلیل‌کاربردی از راههای زیست‌محایی شد (۱۲) درصد حذف اثری مرحله کی (B) به ترتیب تعادل بکاری این تحقیق در زمان ۱۰ و ۱۰۰ میلی‌لیتر قرار گرفته به مدت ۱ دقیقه آب کشی می‌شود.

ویژگی‌های

- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی
- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی
- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی

در این تحقیق راندمان حذف بکاری بکاری این تحقیق در زمان ۱۰ و ۱۰۰ میلی‌لیتر قرار گرفته. کلیه آزمایش‌ها در دمای آزمایشگاه (۲۰ درجه سانتی‌گراد) انجام شد. همزمان مغناطیس (یک واژه) و نمونه آب آلوه مورد استفاده قرار گرفت. برای تنظیم pH از دستگاه pH استفاده گردید. راندمان حذف بکاری این تحقیق (Hach تحلیل‌کاربردی از راههای زیست‌محایی شد (۱۲) درصد حذف اثری مرحله کی (B) به ترتیب تعادل بکاری این تحقیق در زمان ۱۰ و ۱۰۰ میلی‌لیتر قرار گرفته به مدت ۱ دقیقه آب کشی می‌شود.

ویژگی‌های

- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی
- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی
- تأثیر الکترولیز بر روی کارایی حذف بکاری اشکال کی

در این تحقیق راندمان حذف بکاری بکاری این تحقیق در زمان ۱۰ و ۱۰۰ میلی‌لیتر قرار گرفته. کلیه آزمایش‌ها در دمای آزمایشگاه (۲۰ درجه سانتی‌گراد) انجام شد. همزمان مغناطیس (یک واژه) و نمونه آب آلوه مورد استفاده قرار گرفت. برای تنظیم pH از دستگاه pH استفاده گردید. راندمان حذف بکاری این تحقیق (Hach تحلیل‌کاربردی از راههای زیست‌محایی شد (۱۲) درصد حذف اثری مرحله کی (B) به ترتیب تعادل بکاری این تحقیق در زمان ۱۰ و ۱۰۰ میلی‌لیتر قرار گرفته به مدت ۱ دقیقه آب کشی می‌شود.
بحث

همان طور که مشخص است بهترین فاصله بین الکترودها برای دست با پایه به حذف کامل اشیاسی کلی در 100 میلی لیتر، فاصله 2 مسانتی متر است. راندمان حذف باکتری با تعداد 10 عدد باکتری اشیاسی کلی در میلی لیتر در ونژه 10 ولت، زمان الکتروپسی 2 دقیقه در pH مایع 7 و در فاصله های 2/5 و 3/5 سانتی متر به ترتیب 100، 100، 100٪ به دست آمد. در حضور 10 عدد باکتری اشیاسی کلی در میلی لیتر همان طور که در شکل مشخص است راندمان حذف باکتری در فاصله های 2/5 و 3/5 به ترتیب 97/3٪ و 95/7٪ تعیین گردید.
جدول ۲: نتایج اثر الکتروولیز در حذف باکتری اشترشیاکلی از آب آنلوده ۱۰ و ۱۰۰۰ CFU

<table>
<thead>
<tr>
<th>زمان (min)</th>
<th>۰۰۰ CFU</th>
<th>۱۰۰۰ CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۴۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>فاصله بین الکترودها (cm)</th>
<th>۲۰</th>
<th>۲۵</th>
<th>۲۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۵۰</td>
<td>۲۰</td>
<td>۲۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>۸۰۰</td>
<td>۲۰</td>
<td>۲۵</td>
<td>۲۵</td>
</tr>
<tr>
<td>۸۵۰</td>
<td>۲۰</td>
<td>۲۵</td>
<td>۲۵</td>
</tr>
</tbody>
</table>

امست که کارایی حذف باکتری اشترشیاکلی در سه می‌توانید نتایج تحقیق‌های پیش از این مورد pH=7.۶ و pH=9.۶ را به زمان الکتروولیز با در نظر گرفته شود. در این تحقیق، به مدت ۵ دقیقه pH الکترود و فاصله بین الکترودها به طور متوسط رحمانی از سال ۲۰۰۵ در سال ۲۰۰۳ به داشته باشید. این همچنین با توجه به مدت زمان الکتروولیز و فاصله بین الکترودها تاپیدکنده این نتیجه گیری
می‌شود (۴ و ۸). این یافته تحقیق با تحقیق انجام گرفته توسط کوئین در سال ۲۰۰۲، رحمانی در سال ۲۰۰۵ و یون در سال ۲۰۰۷ مطابقت دارد (۱۰).

نتیجه‌گیری
گندزدایی آب به روش الکترولیز، یک روش جایگزین امیدبخش در گندزدایی آب بر علیه اشراستی‌کی محسوب می‌شود. بالاترین راندمان حذف اشراستی‌کی کلی با تعداد ۱۰ CFU۲۰۰۷ مطابقت دارد (۱۰).

جدول ۱: تأثیر الکترولیز در حذف باکتری اشراستی‌کی کلی از آب آشامیده به میلی لیتر در pH معادل ۸ زمان الکترولیز، فاصله بین الکترود‌ها و ولتازه‌ها مختلف

<table>
<thead>
<tr>
<th>فاصله الکترود (cm)</th>
<th>ولتاز (V)</th>
<th>زمان (min)</th>
<th>CFU</th>
<th>CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>۰</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۱</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۲</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۳</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>۴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

یافته‌های افزایش راندمان حذف باکتری اشراستی‌کی کلی با تعداد اکلی در لیتر منجر به شود (۴). کوکین نشان داد که نابودی باکتری اشراستی‌کی با ۱۰ عدد در میلی لیتر در شدت جریان الکترولیز ۵ میلی آمپر به ترتیب به مدت الکترولیز ۵ و ۱۰ دقیقه نیاز دارد (۸). این محققان نشان دادند که مولکول‌های لیپوپلاسما کارکرد غلظت‌خارجی باکتری گرم منفی اشراستی کلی با یک منفی بر جذب بر روی الکترود و روی عناوین طبیعی (اندی) منجر به شود. همچنین می‌توان نتیجه گرفت که افزایش ولتاز به افزایش نیروی رانشی بر روی سطح الکترود می‌کمک کامل اصل در فراوانی الکتروشیمیایی محسوب می‌شود و جذب الکترواستاتیکی باکتری اشراستی کلی بر روی الکترود روي منجر
بررسی حذف باکتری اشترشیکالی از آب آلوده

استفاده از الکترودهای ارزان تر برای کاربردهای بالقوه جهت گندزدایی آب به روش الکترولیز، بررسی اثر متغیرهای محیطی

بین الکترودینی آب به به روش الکترولیز در تحقیق‌های تصمیم‌گیری مورد بررسی قرار گرفته.

شکل ۱: طرح شماتیک از رآکتور نایبوپن الکترولیز

۱- منبع تغذیه ۵- الکترود روی قطب مثبت
۲- الکترود ۶- میله مغنیطیسی
۳- ولت سنج ۷- همزمان مغنیطیسی
۴- الکترود مد قطب مثبت

شکل ۲: نتایج درصد حذف میکروبی در سیستم الکترولیز برای حذف باکتری اشترشیکالی کلی از آب آلوده ۱۰۰ و ۱۰۰۰ هدف در میلی لیتر در زمان الکترولیز ۲۰ دقیقه، فاصله بین الکترود‌ها ۲ سانتی متر، ولتاژ ۱۰ و ۱۰ ولت و در pH های مختلف.

۱۰۰CFU ۱۰۰۰cfu Column1

درصد الحکم

۱۰۰ ۸۰ ۶۰ ۴۰ ۲۰ ۰

۱۰۰ CFU ۱۰۰۰ CFU

pH=6 pH=7 pH=8
شکل ۳: نتایج درصد حذف میکروبا در سیستم الکترولیز برای حذف باکتری اشرفیا کلی از آب آفوده (الف) ۱۰ عدد در میلی لیتر ب) ۱۰ عدد در میلی لیتر در زمان الکترولیز ۵ دقیقه، فاصله بین الکترودهای ۲ سانتی متر و ولتاژهای مختلف

اطلاعات علمی پژوهشی انگلیسی به رهیافت مذهبی ایران
Investigation of E. coli Removal from Polluted Water Using Electrolysis Method

*Rezaee A. 1, Kashi G. 1, Jonidi Jafari A. 2, Khataee A.R. 3

1Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2Department of Environmental Health, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
3Department of Applied Chemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran

Received; 27 October 2010 Accepted; 22 January 2011

ABSTRACT

Background and objective: The conventional chemical and physical methods for water disinfection include the application of ultraviolet (UV), chlorination, and ozonation. Water disinfection by electrochemical methods has been increasingly carried out recently. The goal of this applied – analytical research is to investigate the removal of E. coli bacteria, as the index of water microbial contamination, from drinking water by electrochemistry method.

Materials and Methods: In this study, the contaminated water sample was prepared through adding 102 and 103 E. coli bacteria per ml of drinking water. The contaminated water entered into the electrochemical reactor and different conditions were studied, included pH (6, 7, and 8), number of bacterium (102 and 103 per milliliter), time (5, 10, 20, and 40 min), distance between electrodes (2, 2.5, 3, and 3.5 cm), and voltage (10, 20, 30, and 40 volts).

Results: The findings indicated the indirect correlation between bacteria removal efficiency and the variable distances between two electrode. The results indicated the direct correlation between bacteria removal efficiency and the variables voltage and electrolysis times. The results showed that the best conditions for removal of 102 and 103 bacteria per milliliter obtained at pH 7, electrolysis time of 10 min, distance between electrodes 2 cm, in the voltage 20 and 30 volts, respectively.

Conclusion: The results of this study indicate that voltage and electrolysis time have the most significant effect on electrolysis efficiency. Research findings showed that electrolysis is a promising method for removal of E. coli bacterium from drinking water.

Key words: Bacterium, E. coli, Electrolysis, Disinfection, Polluted Water

Corresponding Author: rezaee@modares.ac.ir
Tel: +98 21 82883575 Fax: +98 21 82883825