بررسی حذف باکتری اشترشیا کلی از آب آلوده به روش الکترولیز

عباس رضایی؛ گیتی کاشی؛ احمد جنیدی جعفری؛ علیرضا ختایی

резاee@modares.ac.ir

نویسنده مسئول: تهران، بزرگراه جلال آل سلمان، تهران، مدرس، دانشگاه علوم پزشکی، گروه بهداشت محیط

دریافت: 89/11/10

چکیده

زمینه و هدف: روش های نیتریکی و شیمیایی متقابل در گردانه‌های آب، استفاده از پرویژن، کارترین و ارز، زیل هستند. در حالی که گردان‌های آب باکتری اشترشیا کلی (Bacillus thuringiensis) که می‌تواند از آب آلوده باعث آلودگی محیط بیشتر شده باشد.

روش بررسی: نمونه‌های آب آلوده با آزمون pH، 10 عضو باکتری اشترشیا کلی در میلی لیتر آب آشامیدنی انجام گردید. آب آلوده به باکتری وارد راکتور الکترولیز شد و با کاراکتر حذف باکتری در شرایط مختلف pH، عضو باکتری (10 و 100 عدد در میلی لیتر)، زمان (500 و 3000 ثانیه) و 20 و 40 وOLT و 6 و 300 وOLT مورد بررسی قرار گرفت.

نتیجه‌گیری: مقدار pH متوسط کاراکتر حذف باکتری برای میلی لیتر آب آشامیدنی به تعداد 10 و 100 عدد در میلی لیتر در شرایط مختلف pH مقدار 7، مقدار زمان الکترولیز 10 دقیقه، فاصله 1 سانتی متر بین الکترودها به ترتیب 30 و 30 وlat به دست آمد. مقدار pH در شرایط مختلف pH، مقدار زمان الکترولیز 10 دقیقه، فاصله 1 سانتی متر بین الکترودها به ترتیب 30 و 30 وlat به دست آمد.

واژگان کلیدی: باکتری، اشترشیا کلی، الکترولیز، گردان‌ها، آب آلوده

1- دکترای میکروب شناسی، دانشیار دانشگاه علوم پزشکی، دانشگاه تربیت مدرس تهران
2- دانشجوی دکترای بهداشت محیط دانشگاه تربیت مدرس
3- دکترای بهداشت حرفه ای، دانشیار دانشگاه بهداشت، دانشگاه علوم پزشکی تهران
4- دکترای شیمی کاربردی، استادیار دانشگاه شیمی، گروه شیمی کاربردی دانشگاه تربیت مدرس
مقدمه

آب غیربهدانشتی عامل اصلی مرم و میتر کودک در کشورهای توسعه‌یافته محسوب می‌شود۱. گندژدایی آب به کاهش مرم و میتر جهانی و محدود کردن بیماری‌های خطرناک از قبیل وبا و تیفوئید منجر می‌گردد۲. مندوج ترین روش‌های حذف میکروگانیسم‌های بیماری، گندژدایی فیزیکی و شیمیایی آب جداسازی تمامی فاصله غشایی، پرتو فرانش، پرتوهای بیونیک، حارطه، امواج فراصوت، استفاده از کلسی و ترکیبات آن از زنی است۳ و ۴. روش‌های گندژدایی شیمیایی آب از محدوده‌هایی نظر مهر و بوی نمایه‌ساز، تولید فرآورده‌های جانبی ناشی از گندژدایی نظیر تری‌ها پورتنیا یا سرطان‌ها و کرملین‌ها با رخ‌های سنگین گندژدایی‌ها، مصرف غذایی در آب، ایجاد می‌گردد۵. اخیراً روش‌های الکتروشیمیایی، به عنوان روش تکنیکی نیز به کار برده شده است. در روش الکتروشیمیایی میکروگانیسم‌ها توسط حریان الکتریکی متانشی می‌گردد. واژه‌ای مختلف برای این فرد نظر گندژدایی الکترولیتی، گندژدایی الکتروشیمیایی، الکترودسیون آندی، آب کاشتی و آب غازی، شده به روش الکتروشیمیایی مطرح گردیده است۶. یافته‌ها فرآورده‌های جانی متقابل، قابلیت امکانی از جمله آب‌سازی غیرانتفاعی، امکان می‌باشد که روش الکتروشیمیایی است. جریان الکتریکی به تولید کردن انواع گندژدایی‌ها به روش الکتروشیمیایی در آب نظیر آن و گندژدایی کلی به کل آزاد در الکترود‌ها منجر می‌گردد۷. غیرفعال سازی از گانیسم‌ها به علت تولید کلی آب و دی‌اکسید کلر در اثر واکنش الکترودهای الکتروشیمیایی می‌باشد. گندژدایی الکتروشیمیایی از دو کلیک‌پذیر میکروییوبکاپی آب آماده‌ای گردیده و واکنش

1 Lit.min⁻¹ صورت تجاری از کمپانی‌های شیمیایی برگزار کرده و در داروهای صنعتی متداول است. هدف از این تحقیق بررسی حذف باکتری اشترشیا کلی (باکتری آسد باکتری آسد باکتری) از آب آماده‌ای به روش الکتروشیمیایی است. باکتری اشترشیا کلی عناوین شاخص الکتروشیمیایی از دو کلیک‌پذیر میکروییوبکاپی آب آماده‌ای گردیده و واکنش

202
عباس رضایی و همکاران

در لوله های مختلف با کد‌های ایجاد شده، توسط تعداد میانی از باکتری میتوانست ثبت شود. محلول‌های شیمیایی مورد استفاده شامل سولفوریک اسید درصد و کلرور باریم دو آبه (BaCl₂·2H₂O) 1/175 درصد بود. لوله استاندارد 10/5 میکرول لیتر است. جذب ترکیب کلرور باریم و اسید سولفوریک مورد نیاز برای ایجاد شده است. در این لوله در طول مدت ۶۱۰ ثانیه، مسدس اسپیکتروفوتومتر (مدل UNICO و سیستم گرد و غرب) که در لوله استاندارد 10/5 میکرول مشاهده شد. سپس با انجام رقیق مازی (با نسبت ۱ به ۷۵۰) تعداد باکتری آزمایش کلی دارای ۱۰ و ۲۳ عدد در میکرو لیتر آب‌های حاصل شد (۱۱ و ۱۲).

طرحی و ساخت راکتور نایبوپس

راکتوری مشخصات زیر جهت انجام آزمایشات مورد استفاده قرار گرفت. طول شیشه ۳۰ میلی لیتر (۱۰×۸×۲ میلی متر). دو الکترود روي و مسر که هر کدام دارای مساحت ۶۴ سانتی متر مربع (946 میلی متر). شسله الکترود از کف ۱ سانتی متر، مسی خصوصی الکترود (۱-۲ سانتی متر)، نسبت سطح الکترود به حجم راکتور ۲۰ الکترود مس به قطب منفی منبع تغذیه و الکترود روي به قطب مثبت منبع تغذیه متعلق کرد. محلول اسید کلرید ۱/۱۵ وزن جهت تغییر سطح الکترود بود.

قبل از کاربرد مورد استفاده قرار گرفت (۲). منبع بر جریان مستقیم دارای توان تولید جریان الکتریکی ۱۰۰ آمپر و توان الکتریکی حداقل ۶۰ وات است. نظر رفتن شد (شکل ۱). و اکتر قبل از آزمایش استریل گردید و حجم آب آزاد ورودی ۲۰۰ میلی لیتر در نظر گرفته شد.

pH تنظیم

<pH> محلول اسید کلریدیک و سود و ترمال جهت تنظیم کردن مورد استفاده قرار گرفتند (۲).</p
بررسی حذف باکتری ارششیاکلی از آب آلوهه

سنجه باکتری ارششیاکلی

به منظور ارزیابی تاثیر گردانه مستقیم بر فرابند گندزدایی، نمونه‌ها در pH 6 تا 8 تخمین گرفته و 100 و 1000 عدد در میلی لیتر، زمان (0-5 دقیقه)، فاصله‌های بین الکترودهای 15 و در وات‌های مختلف (100-1000 ولت)، مانند با گردانه الکترود کلیه آزمایش‌ها در دمای آزمایشگاه 200 درجه سانتی‌گراد (IKA) مدل (IKA) برای پکینگده نمونه آب آلوهه مورد استفاده قرار گرفت. برای تنظیم استفاده گردید، راندمان حذف باکتری این تحقیق (Hach تحلیل‌کاربردی از الگوی نسبی بسیاری شد) و B1 + B2

درصد حذف به ترتیب تعداد باکتری پس از الکترود در زمان t و

تعداد باکتری اولیه در زمان 100 است.

پس از انگیزه الکترود گردشیده توسط آب م قطره می‌شود.

یافته‌ها

نتایج حاصل از الکترودیزاین الکترلیز رودریگزدایی آب در حالت های مختلف (بیش از 1000 و 1000 عدد باکتری های ارششیاکلی در میلی لیتر، زمان الکترود و وات‌ها) در جدول های 1 از این گردیده است.

اثر حذف باکتری بر روی کارایی حذف باکتری ارششیاکلی

کارایی فرابند گندزدایی با صرفه جویی از الکترود و وات‌ها در حد 100 و 100 عدد باکتری ارششیاکلی در میلی لیتر الکترود کلیه (جدول 1-2). پس از انگیزه باکتری در دست دانه‌ای رهیاب دست در دست با یابی به حذف کامل ارششیاکلی در 100 میلی لیتر در pH 4، 5 و 600 ولت به ترتیب برای تعداد 10 و 10 عدد باکتری ارششیاکلی

کلی به حذف و حذف باکتری است. بهترین برای دست با یابی به حذف ارششیاکلی در 100 میلی لیتر در pH 4، 5 و 600 ولت در فاصله 20 سانتی‌متر به ترتیب برای 20 سانتی‌متر در pH 4، 5 و 600 ولت به ترتیب 20 و 20 دقیقه است.

اثر فاصله با باکتری حذف باکتری ارششیاکلی

کارایی فرابند گندزدایی با صرفه جویی از الکترود و وات‌ها در حد 100 و 100 عدد باکتری ارششیاکلی در میلی لیتر با کاهش به (شکل 3).
جدول 1: تنویع آسید الکترولیز در حذف باکتری اشترشیا کلی از آب آشامیدنی 10 و 100 و در میلی لیتر در pH میلی لیتر، اکثریت، فاصله بین الکترود ها و ولتاژ متن فارسی:

<table>
<thead>
<tr>
<th>ولتاژ (v)</th>
<th>زمان (min)</th>
<th>درصد راندمان حذف باکتری</th>
<th>درصد راندمان حذف باکتری</th>
<th>قاچین الکترود</th>
<th>CFU</th>
<th>CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بحث

بر اساس نتایج حاصل از بررسی تعداد 10 و 100 عدد باکتری اشترشیا کلی در میلی لیتر بروی کارایی خود، می‌توان نتیجه گیری نمود که با کاهش درجه حرارت کارایی جریان دارد. میزان حذف باکتری با تعداد سالن در میزان ولتاژ و مقدار نشان می‌دهد که تعداد کاهش تولید شده نظیر تولید کرده در آن کاهش پایه است. این یافته تحقیق با تحقق انجام کرده توسط کوین در سال 2003 مطابقت دارد. این محقق نشان داد که با کاهش درجه حرارت کارایی کلی از 10% به 0% در میلی لیتر در مدت الکترولیز 5 دقیقه و شدت جریان الکترولیز 5 میلی آمپر به کاهش حذف 50% منجر می‌شود (8).
جدول ۲: نتایج اثر الکترولیز در حذف باکتری اشترشیاکی کلی از آب آنلوده ۱۰۰ و ۱۳۰ عدد در میلی لیتر در pH ممادل ۷ زمان الکترولیز، فاصله بین الکترودها و ولتاژهای مختلف

<table>
<thead>
<tr>
<th>فاصله بین الکترودها (cm)</th>
<th>ولتاژ (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

درصد راندمان حذف باکتری اشترشیاکی کلی در CFU ۱۰۰ و CFU ۱۰۰۰

<table>
<thead>
<tr>
<th>زمان (min)</th>
<th>CFU ۱۰۰</th>
<th>CFU ۱۰۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۲۰</td>
<td>۹۹</td>
<td>۹۶</td>
</tr>
<tr>
<td>۴۰</td>
<td>۹۶</td>
<td>۹۴</td>
</tr>
<tr>
<td>۶۰</td>
<td>۹۹</td>
<td>۹۸</td>
</tr>
<tr>
<td>۸۰</td>
<td>۹۹</td>
<td>۹۹</td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۹۹</td>
<td>۹۹</td>
</tr>
</tbody>
</table>

در خصوص بررسی کارایی حذف باکتری اشترشیاکی کلی در pH ۶.۷ و ۷.۶ می‌توان به نتایج زیر باکتری کلی در pH ممادل ۷ روش ارتباط مستقیم با pH دارد. همچنین به سبک عملیات pH اشترشیاکی در فاز رشد لگاریتمی به وسیله pH آب تحت تأثیر قرار می‌گیرد. این پایه‌ها با تحقیق انجام گرفته توسط رحمانی در سال ۲۰۰۵ در سیال ۱۰۰ مطابقت آن دارد (۴) و (۱۴). می‌توان توجه گیری نمود که اشترشیاکی کلی را نمود. اشترشیاکی کلی مورد نظر مسئول گذراندن آب مشروبی است که کارایی حذف باکتری اشترشیاکی کلی در مصرف زمان الکترولیز و مدت زمان الکترولیز افراشی می‌باشد. افراشی را باید با افراشی فاصله بین الکترودها کاهش می‌اند. افراشی و ولتاژ و مدت زمان الکترولیز به علت ترسریع تر فراورده‌های ناشی از الکترولیز تظییر دیده یا OH- به ترتیب در الکترودهای کاتد و اند به افراشی کارایی گنبدزایی موجب می‌شود. فراورده‌های مورد نظر مسئول گذراندن آب محصول می‌شود. مطالعات با مطالعه انجام گرفته توسط رحمانی در سال ۲۰۰۵ و لی در سال ۲۰۰۳ مطابقت دارد (۴) و (۱۴). رحمانی نشان داد که افراشی و ولتاژ از ۸ ولت به ۲۵ ولت و کاهش فاصله از ۸ سانتی متر به ۲ سانتی متر به
عباس رضایی و همکاران

جدول 3: نتایج افزایش کلمی در حذف باکتری اشرشیا کلی از آب آسیه 10 و 100 عدد در میلی لیتر در pH معادل 8 زمان الکترولیز، فاصله بین الکترودها و ولتاژ‌های مختلف

<table>
<thead>
<tr>
<th>فاصله الکترودها (cm)</th>
<th>ولتاژ (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
</tr>
</tbody>
</table>

درصد راندمان حذف باکتری اشرشیا کلی با تعداد اولیه باکتری 100 CFU

<table>
<thead>
<tr>
<th>زمان (min)</th>
<th>درصد راندمان حذف باکتری اشرشیا کلی با تعداد اولیه باکتری 1000 CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

نتایج گیری

کنترل اسید آمین در کنار با کنترل الکترولیز، به روش چایگیرین امیدبخش در کنترل‌های آب بر علیه اشرشیا کلی محسوب می‌شود. در حالی که با افزایش زمان حذف اشرشیا کلی با تعداد 100 CFU می‌توان در میلی لیتر در pH معادل 8 مدل زمان الکترولیز کمتر از 5 دقیقه، فاصله 2 سانتی‌متر بین الکترودها و ولتاژ 30 ولت به دست آمد. به همراه افزایش زمان حذف اشرشیا افزایش در pH می‌شود. محققان می‌توانند نتیجه گیری کنند که افزایش ولتاژ به همراه تغییر یافته افزایش در pH می‌شود و جذب الکترواستاتیکی با کاتیون اشرشیا کلی بر روی الکترود را منجر می‌سازد.
بررسی حذف باکتری اشتریکالی از آب آلوهه...

_astفاده از الکترودهای ارزان تر برای کاربردهای بالقوه جهت
gذاری آب به روش الکترولیز، بررسی اثر متغیرهای محیطی
بر روی گذاری آب به روش الکترولیز در تحقیق های
تکمیلی مورد بررسی قرار گرفته.

![شکل 1: طرح شماتیک از راکتور تایپوسته الکترولیز](image)

- 1. منبع الکترود
- 2. الکترود روی قطب مثبت
- 3. آمپری
- 4. میدان مغناطیسی
- 5. الکترود مس قطب منفی

![اینفوگرافیک: نتایج درصد حذف میکروپی در سیستم الکترولیز برای حذف باکتری اشتریکالی کلی از آب آلوهه کم‌تر از 100 و 1000 عدد در میلی لیتر در زمان الکترولیز 100 و 1000 عدد در میلی لیتر در زمان الکترولیز](image)

شکل 2: نتایج درصد حذف میکروپی در سیستم الکترولیز برای حذف باکتری اشتریکالی کلی از آب آلوهه کم‌تر از 100 و 1000 عدد در میلی لیتر در زمان الکترولیز 100 و 1000 عدد در میلی لیتر در زمان الکترولیز.
شکل ۳ نتایج درصد حذف میکروبی در سیستم الکترولیز برای حذف باکتری اشرشیا کلی از آب آفوده (الف) ۱۰ عدد در میلی لیتر ب. ۱۰۰ عدد در میلی لیتر در زمان الکترولیز ۵ دقیقه. فاصله بین الکترودهای ۲ سانتی متر و ولتاژها ی مختلف
شکل 3: نتایج درصد حذف میکروبی در سیستم الکترولیز برای حذف باکتری اشتریا کلی از آب آلوهه 100 و 1000 CFU در زمان الکترولیز 20 دقیقه.

تشکر و قدردانی

پدیدآورنده از دانشگاه تربیت مدرس به خاطر پشتیبانی مالی این تحقیق تشکر و قدردانی می‌گردد.
Investigation of E. coli Removal from Polluted Water Using Electrolysis Method

*Rezaee A.1, Kashi G.1, Jonidi Jafari A.2, Khataee A.R.3

1Department of Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2Department of Environmental Health, School of Public Health, Iran University of Medical Sciences Tehran, Iran
3Department of Applied Chemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran

Received; 27 October 2010 Accepted; 22 January 2011

ABSTRACT

Background and objective: The conventional chemical and physical methods for water disinfection include the application of ultraviolet (UV), chlorination, and ozonation. Water disinfection by electrochemical methods has been increasingly carried out recently. The goal of this applied – analytical research is to investigate the removal of E. coli bacteria, as the index of water microbial contamination, from drinking water by electrolysis method.

Materials and Methods: In this study, the contaminated water sample was prepared through adding 102 and 103 E. coli bacteria per ml of drinking water. The contaminated water entered into the electrochemical reactor and different conditions were studied, included pH (6, 7, and 8), number of bacterium (102 and 103 per milliliter), time (5, 10, 20, and 40 min), distance between electrodes (2, 2.5, 3, and 3.5 cm), and voltage (10, 20, 30, and 40 volts).

Results: The findings indicated the indirect correlation between bacteria removal efficiency and the variable distances between two electrode. The results indicated the direct correlation between bacteria removal efficiency and the variables voltage and electrolysis times. The results showed that the best conditions for removal of 102 and 103 bacteria per milliliter obtained at pH 7, electrolysis time of 10 min, distance between electrodes 2 cm, in the voltage 20 and 30 volts, respectively.

Conclusion: The results of this study indicate that voltage and electrolysis time have the most significant effect on electrolysis efficiency. Research findings showed that electrolysis is a promising method for removal of E. coli bacterium from drinking water.

Key words: Bacterium, E. coli, Electrolysis, Disinfection, Polluted Water