تأثیر بازدارنده‌گی آنتی بیوتیک های سیروفلوکساسیس، اوفلوکساسیس و هورمون β

17

β- استرادیول و رات بر روي میزان متان سازي بیووس بی هوازي

مهمز حيدري، هاجر صفاری خوزاتی، محمدمهدی امینی، محمد قاسمیان، الهام طاهریان، لیلا عطاری، اکبر حسن زاده

نويسندگان: اسفهان، خیابان هزار جریب، دانشگاه علوم پزشکی اصفهان، مرکز تحقیقات محیط زیست

دریافت: 89/10/25

بدرش: 90/1/22

چکیده

زمینه و هدف: آنتی بیوتیک ها و هورمونها پس از تاثیرگذاری، همراه با سایر زایمان‌ها از بدن دفع می‌شوند و با خوردن به فاضلاب، می‌توانند فراوانی تصفیه‌های هوازی را مختل کنند. در این مطالعه بازدارنده‌گی آنتی بیوتیک افولوکساسیس و سیروفلوکساسیس و هورمون β استرادیول و رات بر تولید میزان متان سازی بیووس بی هوازی Specific Methanogenic Activity (SMA) بر تغییرات میزان متناسازی وزه Ei بر روی آزمون‌ها و آزمون‌های SMA به روش نابی‌پزشکی و در ویژه گزارش شده‌ای از 10 میلی لیتری انجام شد. بررسی از حجم هر ویال به بیومس قبلاً تهیه شده و بررسی باعث روی آزمون‌ها و آزمون‌های SMA به عنوان قابل توجه 21 آزمون به روش نابی‌پزشکی و در ویژه گزارش متعاقب 21 آزمون به روش پزشکی SMA در 1000 mg/L و 50 mg/L سیروفلوکساسیس و هورمون β استرادیول و رات به میزان 25 و 77 درصد. میزان کاهش افزایش و کاهش درآمدها به میزان 1000 mg/L و 50 mg/L در طول زمان در 1 درصد بود. با کاهش 88 و 88 درصدی تولید میزان متناسازی با ترکیب دو لیتر از غلظت‌های 100 و 200 mg/L و 50 mg/L در غلظت‌های Ei در غلظت‌های 90 و 40 درصد بود. با ترکیب دو این بیمار به وجود آنتی بیوتیک سیروفلوکساسیس و افولوکساسیس بازدارنده‌گی تثبیت

واژگان کلیدی: آنتی بیوتیک سیروفلوکساسیس، آنتی بیوتیک افولوکساسیس، هورمون β استرادیول و رات (SMA)
مقدمه
امروز علائم بر اثر کشت حیوان، ترکیبات شیمیایی صنعتی، گردیوتیکه (ساخت دست بشر) و ترکیبات شیمیایی آلی، انتشار ترکیبات دارویی و مراقبت‌های شیمیایی (PPCPs) و متابولیست‌ها از آن‌ها در محیط موجب افزایش نگرانی در سال‌های اخیر شده است (1). به‌خاطر کاربرد ترکیبات دارویی در درمان انسان‌ها و مصرف دامپزشکی، بسیاری از دارو و همچنین جنگ شده و باقی مانده آن‌ها همراه با مواد فرآیندی (به خصوص ادارات) روزانه از بدن به محیط دفع می‌شود.

ترکیبات دارویی از طرفی نمی‌توانند ترکیبات جلب‌گیری می‌کنند لذا کاربرد و وسیع این داروها در افزایش خطرات زیست محیطی می‌شود. محققین حضور مستقیم این ترکیبات در فاضلاب داروسازی می‌تواند بر تغییرات پیوسته و جمعیت میکروپویک و بیماری‌ها بی‌خانمان باشد. باقی‌مانده آن‌ها بی‌بی‌تیکها و متابولیست آن‌ها در لجن‌ها و جغرافیا روی سیستم‌های تغییرات و تغییرات بافت هستند.

پایش و کنترل استراتژی‌های مهم برای رشد به پایداری بهتر فرآیند و افزایش راندمان در هاضم‌های بی‌هوازی هستند. تولید غذای معمولی نشان جهت کنترل است (5).

در سیستم‌های می‌تواند یا این توئیتر چندین راه تجربه پیوسته می‌تواند به دانش‌دان بی‌هوشی خاص نیاز به کاهش قابل توجهی تولید بی‌خودی و همچنین بی‌پایداری طولانی مدت یا امکان دورکاری هم‌چنین استناد بی‌هوشی می‌تواند در می‌تواند به دانش‌دان بی‌خودی برتر کاهش قابل توجهی تولید بی‌خودی و همچنین بی‌پایداری طولانی مدت یا امکان دورکاری هم‌چنین استناد بی‌هوشی می‌تواند

در سیستم‌های می‌تواند یا این توئیتر چندین راه تجربه پیوسته می‌تواند به دانش‌دان بی‌خودی خاص نیاز به کاهش قابل توجهی تولید بی‌خودی و همچنین بی‌پایداری طولانی مدت یا امکان دورکاری هم‌چنین استناد بی‌هوشی می‌تواند در می‌تواند به دانش‌دان بی‌خودی برتر کاهش قابل توجهی تولید بی‌خودی و همچنین بی‌پایداری طولانی مدت یا امکان دورکاری هم‌چنین استناد بی‌هوشی می‌تواند

در سیستم‌های می‌تواند یا این توئیتر چندین راه تجربه پیوسته می‌تواند به دانش‌دان بی‌خودی خاص نیاز به کاهش قابل توجهی تولید بی‌خودی و همچنین بی‌پایداری طولانی مدت یا امکان دورکاری هم‌چنین استناد بی‌هوشی می‌تواند در می‌تواند به دانش‌دان بی‌خودی برتر کاهش قابل توجهی تولید بی‌خودی و همچنین بی‌پایداری طولانی مدت یا امکان دورکاری هم‌چنین استناد بی‌هوشی می‌تواند

در سیستم‌های می‌تواند یا این توئیتر چندین راه تجربه پیوسته می‌تواند به دانش‌دان بی‌خودی خاص نیاز به کاهش قابل توجهی تولید بی‌خودی و همچنین بی‌پایداری طولانی مدت یا امکان دورکاری هم‌چنین استناد بی‌هوشی می‌تواند در می‌تواند به دانش‌دان بی‌خودی برتر کاهش قابل توجهی تولید بی‌خودی و همچنین بی‌پایداری طولانی مدت یا امکان دورکاری هم‌چنین استناد بی‌هوشی می‌تواند
شده، ولی غلظت بالایی از آن کاهشی پیش‌گیری رود مجارچت بیوگاز نداشت، لذا می‌توان این گونه پیش‌گیری کرد که به نظر می‌رسد مهم‌سازی جمعیت‌های میکرو‌وری در مکاوان شده است.

مهاجرن در سال 1400 کم‌ترین 24% بیوگاز تجویز یافته Osman ra روی دوگاه پهن گورشاله‌هایی که با اکسی‌تراساکلین درمان شده بودند در مقایسه با دوگاه پهن گورشاله‌های دیگر نشان دادند (2). و به یادآوری می‌آید، این اثر با گسترش دوگاه پهن خود بررسی گردیده و در اثر آن به اکسی‌تراساکلینی در غلات به 17 و 37 میلی‌گرم بر لیتر فاقد اثر بوده‌اندیگی است (3).

Mastui و همکاران (2000) مشاهده کردند که غلظت 17–18 نسبت یافته با استروژن و استروژن‌ها در میان آکیری شده‌های لجن بی‌روشی و ورودی به غلظت خانه بی‌روشی است (4،5) و اثر در میانه این آشکار که بارها ورودی و خروجی استروژن‌ها در هم‌پوشانی است که تا زمان استروژن‌ها

تحت شرایط مناظریزی تجزیه محصولی نمی‌شوند (1) و در مقیاس موالی دیگر گزارش‌های مناظریزی را ارایه داده ولی همکاران (2016) در اینجا که به Holbrook برای مثال استرولین استروژن‌ها در ورودی فاضلاب این واکنش و آن‌ها در طول تصفیه فاضلاب با تصفیه جامدین لجن

حذف می‌شوند (1). و Kreuzinger و همکاران (2004) نشان دادند که فارما هضم

ییه شاهرآی در این دسته‌های طبیعی را تسهیل می‌بخشد (1) و فعالیت‌های متغیر باید پایش تجدیدت در تعداد و فعالیت باکتری های سر در جریان تصویب‌پذیری سپس های دارای ترسره‌ای در پیروکارتن‌های

آزمایش SMA برای ارزیابی اثرات بی‌روشی گذشته که تحقیقات کمی در زمینه استفاده از این آزمایشات برای اثرات آنی بیوتیکها و
مشخصات ویال ها و بذرده: 20 میلی لیتر از حجم هر ویال 120 میلی لیتری توسط بیورس به هوانی و 80 میلی لیتر سویسترا پر می‌گردد. ویال چندان به تجهیز بیوگرای اختصاصی می‌پردازد. درب ویال ها با واشرهای لاستیکی و سپس پوشش‌های آلومینیومی آب پذیر گردید. احتمال محوطه ویال ها با استفاده از دستگاه گرم زن‌گیره‌های خانه (ساخت شرکت پارس آزمایشگاه) در محدوده 20-22 درجه سانتی‌گراد اندازه‌گیری شد. متوسط محلول 2 گرمی به عنوان جاذبه تیم اول به مان drift به عنوان اندازه‌گیری اتصال کیو شد. جهت کمک آزمایشات از نمونه‌های جهاد استفاده گردید. 100-120 گرم در لیتر بذرده گردد.

سویسترا: مخلوطی از چهار نوع استیک چرب فرار با زنجره کوتاه شامل دی‌ام‌اس استیک، اسید پروپیونیک، اسید پروپیونیک و اسید وترین به عنوان سویسترا کمک برای آن‌های بیوتیک یا اسید وترین به عنوان حلال هورمون E2 با غلظت های ارائه‌شده در جدول 1 وارد استفاده قرار گرفت. سویسترا اصلی مشکل از سویسترا کمکی آنتی‌بیوتیک یا هورمون‌و نتیجه‌ها و...

جدول 1: مشخصات سویسترا های کمکی و حلال مورد استفاده در این مطالعه

<table>
<thead>
<tr>
<th>COD غلظت، میلی گرم در لیتر</th>
<th>حلال سویسترا کمکی</th>
<th>معادل 1/2 میلی گرم در لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرپروروفلکسین و اولوکسان</td>
<td>اسید استیک</td>
<td>✓</td>
</tr>
<tr>
<td>1500</td>
<td>1400</td>
<td>✓</td>
</tr>
<tr>
<td>1500</td>
<td>990</td>
<td>✓</td>
</tr>
<tr>
<td>1500</td>
<td>850</td>
<td>✓</td>
</tr>
<tr>
<td>2000</td>
<td>3000</td>
<td>✓</td>
</tr>
</tbody>
</table>

192
جدول ۴-۲ غلظت‌های متغیرهای ترکیبات به کار رفته در همراه با حذف سه‌شیوه معادل میلی لیتر COD مشاهده و نشان می‌دهد.

در شکل‌های ۲ و ۳ نمودارهای مربوط به تأثیر غلظت‌های متغیرهای بیوتکنیک سیبروفلوکساسین، اوکولکاسین و شکل ۴ هورمون F به روش میزان تولید میزان تجمعی مشاهده می‌شود. نمودارهای مربوط به هر کدام آن ترکیبات به دو گروه شامل غلظت‌های کم و غلظت‌های زیاد تقسیم شدند آن‌ها.
بحث

شکل 3- تأثیر آنتی بیوتیک اولفوکاسین بر روی میزان تجمع سالمندی و توزیع بیولوژیکی بی‌هوازی (الف): در غلظت های کم شاخص (0.1 - 0.5) میکروگرم/لیتر و بالاتر (100 - 500 میکروگرم/لیتر) و شاخص با صفر (0) میکروگرم/لیتر تغییرات در توزیع بیولوژیکی بی‌هوازی مشاهده نشد.

شکل 4- آنتی بی‌هوازی جایگزینی میان تولیدی در برای غلظت های مختلف اولفوکاسین در مقایسه با نمونه شاخص با نام اینه و اینه ناشناخته مشاهده شد. میزان طور که در شکل 3-الف) مشاهده شد که در تنفس سیستم‌ها با قابلیت تجزیه بیولوژیکی آسان تر بروک باکتری های میان سازی کرده و باعث افزایش راندمان

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L
من‌تولیدی در لجن یی‌هوازی شده است. همچنین، غلظت کم این ترکیبات می‌تواند به‌راه‌دار‌گی کمت و تجزیه بهتر توسط بакتری‌های فعال در بیوم‌های هوازی کمک کند. در مقابل همان طور که در شکل ۱ ب مشاهده می‌شود با غلظت عضو‌های سپیروفلوکسنس در گرده ۵۰۰ mg/L تا ۵۰ mg/L در لجن هوازی مورسمی میزان مان تولیدی کاهش دارد. در یک باند به گونه‌ای که این تفاوت بین غلظت های ۵۰۰ mg/L تا ۵۰ mg/L می‌باشد، میزان غلظت سپیروفلوکسنس باعث از بین رفتن باکتری‌های گرم منفی می‌شود. همانند بیشتر گرفت‌های نمایش غلظت سپیروفلوکسنس باعث از بین رفتن باکتری‌های گرم منفی شده‌اند که من‌تولیدی در مخلوط بر یی‌هوازی می‌شود.

شکل ۱-الف و ب) میزان مان تولیدی را در برابر غلظت‌های مقاومت تزریقی‌ای اعلام کرده‌اند می‌باشد. این شکل اشاره که در لجن هوازی در شکل ۱ ب مشاهده شده است. همچنین، کمیتی گرم منفی می‌شود و میزان تولیدی کاهش می‌یابد. این بیانهای نشان دهنده ساختار شدن باکتری‌ها با لجن یی‌هوازی و مقاومت آن‌ها در برابر آنتی‌بوتیک‌های آزمایش‌گیری‌گردیده‌اند. این اشکال نشان‌دهنده سپیروفلوکسنس به‌عنوان یک روش جدید مقاومت‌ناک برای بهبود نقش اولیه سپیروفلوکسنس به‌دست آمده است. این روش از دست آمده می‌باشد. در یک باند به گونه‌ای که این فاصله بین غلظت‌های ۵۰۰ mg/L تا ۵۰ mg/L می‌باشد، میزان غلظت سپیروفلوکسنس باعث از بین رفتن باکتری‌های گرم منفی شده‌اند که من‌تولیدی در مخلوط بر یی‌هوازی می‌شود.

شکل ۲-ب) میزان مان تولیدی در محدوده ۱۰ mg/L تا ۵۰ mg/L بر سر لجن یی‌هوازی ۵ لجنس پیکری اعلام کرده می‌باشد. همانند، کمیتی گرم منفی می‌شود و میزان تولیدی کاهش می‌یابد. این بیانهای نشان‌دهنده ساختار شدن باکتری‌ها با لجن یی‌هوازی و مقاومت آن‌ها در برابر آنتی‌بوتیک‌های آزمایش‌گیری‌گردیده‌اند. این روش از دست آمده است. این روش از دست آمده می‌باشد. در یک باند به گونه‌ای که این فاصله بین غلظت‌های ۵۰۰ mg/L تا ۵۰ mg/L می‌باشد، میزان غلظت سپیروفلوکسنس باعث از بین رفتن باکتری‌های گرم منفی شده‌اند که من‌تولیدی در مخلوط بر یی‌هوازی می‌شود.

شکل ۲-ب) میزان مان تولیدی در محدوده ۱۰ mg/L تا ۵۰ mg/L بر سر لجن یی‌هوازی ۵ لجنس پیکری اعلام کرده می‌باشد. همانند، کمیتی گرم منفی می‌شود و میزان تولیدی کاهش می‌یابد. این بیانهای نشان‌دهنده ساختار شدن باکتری‌ها با لجن یی‌هوازی و مقاومت آن‌ها در برابر آنتی‌بوتیک‌های آزمایش‌گیری‌گردیده‌اند. این روش از دست آمده است. این روش از دست آمده می‌باشد. در یک باند به گونه‌ای که این غلظت‌های ۵۰۰ mg/L تا ۵۰ mg/L می‌باشد، میزان غلظت سپیروفلوکسنس باعث از بین رفتن باکتری‌های گرم منفی شده‌اند که من‌تولیدی در مخلوط بر یی‌هوازی می‌شود.
در غلظت های تریقی گرفته شده، نمی‌توان به سایر ترکیبات Lallai با فرمولاسیون های متفاوت نسبت داد. نتیجه‌گیری تحقیقات انجام شده نشان می‌دهد که تمام باکتری‌های تولید کننده استیل و نیتروژن از این ترکیبات تاثیر نمی‌پذیرند.

ویژگی که تولید بی‌گاز اهمیت دارد، تابع با همچنین بیان کننده آنست. به نظر می‌رسد در تریق غلظت های متفاوت آزمایش بی‌بی‌تیک و هورمون امکان پیش‌گویی در رابطه با درجه بی‌اژدرندگی و میزان بی‌گاز تولید نیست و نتیجه‌ای که در مورد این ترکیبات

شکل 4: تاثیر هورمون E2 بر روی میزان تجمعی منان سازی و بی‌بویس پی هوایی: (الف) در غلظت های کم شامل: 0.1 (○) و 0.5 (●) میلی گرم در لیتر و (ب) غلظت های زیاد شامل: 10 (●) و 25 (●) و 50 (●) میلی گرم در لیتر.
نتیجه گیری
از یافته‌های این مطالعه نتیجه گیری می‌شود که آنتی‌بوتیک سپیروفولکاسین در غلظت‌های مشابه به آنتی‌بوتیک اولوفولکاسین دارای بیزداری بیشتری بر فعالیت E. coli سازی ویژه بیومس به‌طور همزمان به موجب داشتن E. coli
نسبت به دو آنتی‌بوتیک سپیروفولکاسین و اولوفولکاسین
در غلظت‌های باپین بیزداری ندارند. با افراش تدریجی
غلظت اولوفولکاسین میزان مقداری کاهش می‌یابد ولی

جدول ۲: میزان مقداری کاهش حذف شده COD در ویال‌های حاوی آنتی‌بوتیک اولوفولکاسین

<table>
<thead>
<tr>
<th>قطعه COD</th>
<th>حذف شده میلی گرم</th>
<th>COD میلی لتر متوازن</th>
<th>COD میلی لتر متوازن درصد</th>
<th>اولوفولکاسین</th>
<th>اولوفولکاسین</th>
<th>اولوفولکاسین</th>
<th>میلی لتر متوازن به‌دست از هر گرم VSS</th>
<th>میلی گرم در لیتر</th>
<th>میلی گرم در لیتر</th>
<th>میلی گرم در لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۷۰/۹</td>
<td>۰/۸</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۸۱/۳</td>
<td>۰/۲</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۹۳/۳</td>
<td>۰/۲</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۰۳/۷</td>
<td>۰/۲</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۵۳/۶</td>
<td>۰/۵</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۸۶/۴</td>
<td>۰/۳</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۸۳/۹</td>
<td>۰/۳</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۸۰/۴</td>
<td>۰/۳</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳: میزان مقداری کاهش حذف شده COD در ویال‌های حاوی آنتی‌بوتیک سپیروفولکاسین

<table>
<thead>
<tr>
<th>قطعه COD</th>
<th>حذف شده میلی گرم</th>
<th>COD میلی لتر متوازن</th>
<th>COD میلی لتر متوازن درصد</th>
<th>سپیروفولکاسین</th>
<th>سپیروفولکاسین</th>
<th>سپیروفولکاسین</th>
<th>میلی لتر متوازن به‌دست از هر گرم VSS</th>
<th>میلی گرم در لیتر</th>
<th>میلی گرم در لیتر</th>
<th>میلی گرم در لیتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۸</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۲/۳</td>
<td>۰/۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۸/۶</td>
<td>۰/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۸/۶</td>
<td>۰/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۸/۶</td>
<td>۰/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۸/۶</td>
<td>۰/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۸/۶</td>
<td>۰/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۸/۶</td>
<td>۰/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۸</td>
<td>۸/۶</td>
<td>۰/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شاید
10. Jawed M, Tara V. Microbial composition assessment of anaerobic biomass through methanogenic ac-

| Table 2: COD and E2 concentration in environmental aqueous samples. |
|-------------------|-------------------|-------------------|
| COD Concentration | E2 Concentration |
| (mg/L) | (μg/L) |
| 500 | 100 |
| 400 | 80 |
| 300 | 60 |
| 200 | 40 |
| 100 | 20 |

10. Jawed M, Tara V. Microbial composition assessment of anaerobic biomass through methanogenic ac-

Downloaded from ijhe.tums.ac.ir at 19:07 IRDT on Tuesday April 14th 2020
Inhibition Effect of Antibiotics Ciprofloxacin and Ofloxacin and Hormone β-stradiol 17 Valerat on the Methanogenic Activity of Anaerobic Biomass

Heidari M.¹, Saffari Khouzani H.², *Amin M.M.³, Ghasemian M.⁴, Taherian E.⁵, Attari L.⁵, Hassanzadeh A.²
¹Department of Environmental Health Engineering, Shahrekord University of Medical Sciences, Chaharmahal and Bakhtiari, Iran
²Department of Environmental Health Engineering, Health Center No. 1, Isfahan University of Medical Sciences, Isfahan, Iran
³Department of Environmental Health Engineering, Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
⁴Department of Environmental Engineering, Tehran Wastewater Engineering Cooperation, Tehran, Iran
⁵Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

Received; 15 January 2011 Accepted; 11 April 2011

ABSTRACT

Background and Objectives: Antibiotics and hormones are excreted with other wastes following their influences on bodies. These substances can disturb treatment process by their entry to the wastewater. In this study the inhibitory behavior of antibiotics Ofloxacin and Ciprofloxacin and hormone β stradiol 17-valerat have been investigated on Specific Methanogenic Activity (SMA) of anaerobic biomass.

Materials and Methods: Twenty one SMA tests were done using 120-mL vials in batch mode. In each vial, substrate, biomass and biogas were occupied 66, 17, and 17 % (v/v), respectively. Each test lasted in range of 15-30 days. Produced methane was measured by gas replacement with 2N KOH solution as CO2 absorbent.

Results: In this study, at the concentrations of 200, 500 and 1000 mg/L of antibiotic Ofloxacin, the methane production reduced to 45, 76 and 88 percent, respectively. Reduced methane production of 68, 81 and 88 percent was observed in Ciprofloxacin concentrations of 100, 200, and 500 mg/L, respectively. Cumulative methane at the concentrations of 0.1, 1, and 5 mg E2/L was 66, 90, and 121 mL, respectively.

Conclusion: Antibiotic Ciprofloxacin at concentrations similar to the antibiotic Ofloxacin have a greater inhibitory effect on specific methanogenic activity of anaerobic biomass. Also, the hormone E2 at lower concentrations showed more inhibitory effect than other two antibiotics Ciprofloxacin and Ofloxacin.

Key word: Antibiotic Ciprofloxacin, Antibiotic Ofloxacin, Hormone E2, Specific Methanogenic Activity (SMA)

*Corresponding Author: amin@hlth.mui.ac.ir
Tel: +98 311 79 22 686 Fax: +98 311 66 82 509