بررسی سبیت نانوذرات اکسید روی و اکسید تيتانیوم با استفاده از آزمون زيستی TIO2 و استافیلکوک اوروس 25923 باکتری های اشرشیاکلی 35218 و ATCC

کاظم ندایی، محمد رضا زارع، مسعود بونیان، محمود علی محرابی، نوری رضایی، سیدنیا نیویوی، مهندس بهزادی
نویسندگان: تهران، میدان القاب، دانشگاه علوم پزشکی تهران، گروه مهندسی بهداشتی

مجله سلامت و محیط، قسمت علمی پژوهشی

دریافت: 1 تیر 1391

چکیده

زمینه و هدف: در این تحقیق سبیت نانوذرات اکسید روی (TiO2) و اکسید تيتانیوم (ZnO) با استفاده از TIO2 و ZnO به عنوان دو نوع از پرکاربردترین نانوذرات مورد بررسی قرار گرفت. نتایج این مطالعه می‌تواند به وضعیت استانداردهای و قواعد زيست محیطی نانوذرات کمک کند.

روش بررسی: غلظت های مختلف از دو نانوذره TiO2 و ZnO به محیط کشت های تیوتیبریک اکسید اضافه شد. سپس با مکث کشت های اشرشیا کلی و استافیلکوک اوروس با میزان جفت میزان پازدارندگی رشد در مقایسه با نمونه شاهد تعیین شد. اطلاعات حاصل به کمک ترم آنالیز SPSS ver 16.0 در ارتباط با دو نوع نانوذره تعیین گردید.

EC50: ظرفیت آزمایش‌های 24 ساعت نانوزوار 1/366 mg/L با استفاده از تی عیان و اوروس به ترتیب و ZnO 3471 mg/L با استفاده از تی عیان و اوروس به ترتیب (NOEC) غلظت بدون اثر پازدارندگی با استفاده از تی عیان و اوروس به ترتیب 1/15 و برای نانوذرات اکسید تيتانیوم غلظت بدون اثر پازدارندگی با استفاده از تی عیان و اوروس به ترتیب 1493 و 1184 محاسبه شد.

نتیجه گیری: این مطالعه نشان داد که سبیت حاد نانوذرات اکسید روی به مراتب بیشتر از سبیت حاد نانوذرات اکسید تيتانیوم است. مقایسه نتایج این مطالعه با معرفهای ارائه شده توسط EPA و نانوذرات اکسید تيتانیوم در رده موارد که علم غیر مسئول قرار می‌گیرد با تغییر پیشنهاد وحداد مجاز مواجه و وضع استانداردهای دفع محیط نانوذرات اکسیدروی از نظر سبیت حاد در مقایسه با نانوذرات اکسید تيتانیوم نیازمند مطالعات برگردد است.

واژگان کلیدی: نانوذرات، اکسیدروی، اکسیدتیتانیوم، سبیت، آزمون زيستی، اشرشیا کلی، استافیلکوک اوروس

1- دکتری بهداشت محیط، دانشگاه علوم پزشکی تهران
2- دانشجوی کارشناسی ارشد بهداشت محیط، دانشگاه علوم پزشکی تهران
3- دکتری اپیدمیولوژی، دانشگاه علوم پزشکی تهران
4- دکتری بهداشت محیط، استادیار دانشگاه بهداشت، دانشگاه علوم پزشکی تهران
5- دکتری شیمی دارویی، استادیار مرکز تحقیقات محیط زیست، دانشگاه علوم پزشکی تهران
6- کارشناس بهداشت محیط، دانشگاه آموزشگاه مکروپیلوژی دانشگاه بهداشت، دانشگاه علوم پزشکی تهران
مقدمه

اکسیدهای فلزی نانوذرات در مقایسه وسیعی هم در سنگینت و هم در موارد خانگی کاربرد دارند (1). استفاده رو به رشد از نانوذرات مصنوعی در جوامع انسانی یک شک منجر به آزادسازی جنین موادی به انواع مفیدی می‌شود. سیستم‌ها خواهد شد (2،3). این وجود تحفیقی کمی در مورد فرآیند محیطی میان آزادسازی نانوذرات های آبی و خطرات بالقوه نانوذرات TiO2 در فضاهای مختلف تولید گردیده است (4،5). به طوری که نتایج فرآیند فلز در خواص و اهمیت شیمیایی و دارویی را به ارزیابی اثرات بیولوژیکی آنال اکسیدهای کاربردهای آرایه‌ای و بهداشت نانوذرات انجام شده است. ویاک (5) در این مقاله اثرات فشار بر تولید TiO2 و ZnO می‌دهد که نانوذرات TiO2 (با قطر 20-40 نانومتر) بر اثر مواجه با اشعه UVA خواص سایتوبیوشیمی‌سازی ترشی‌شده از در دیگر اشکال رادیکال‌های آزاد در سلول‌های چرخه شرکت می‌کند و نیز DNA و پروتئین سلول‌ها آسیبی می‌بیند. به دلیل این آسیب های بالقوه نانوذرات TiO2 باید باید از طرف بگیرد. خورشید (13). به علاوه این مواد با عبور از در حدیت خردی می‌گیرند و مایل به استفاده از آبی اکسیدهای مانند TiO2 یا ZnO طوری که محققان این روش آنالیزی ساده کرده‌اند که 25% از گرم‌های ضد آفتی که برای محافظت از پوست استفاده می‌شود از طریق استحمام و یا طعم شسته می‌شود. این مقدار باعث می‌شود...
غلظت‌های از نانوذرات TiO\textsubscript{2} و ZnO در آگار، این میزان حاویت درون یک دیش ریخته شدند و به صورت چرخشی یک‌دست شدند.

ست سیمت و کشت باکتری

باکتری‌های آزمایش‌گاهی کالی ۱۳۵۲ و استاتیل‌فیورکو اوروس از عنوان باکتری

گرم منفی، به دلیل وفور در طبیعت و کشت و به روش آسان، گونه‌های مانیسی است.

این مطالعه به منظور بررسی سیمت نانوذرات، مورد بررسی قرار گرفت.

بدین منظور نانوذرات آکسید روی و اکسید نیترات به عنوان دو نوع از بکتری‌های نانوذرات در میان باکتری گرم منفی و

گرم منفی قرار گرفتند و EC\textsubscript{50} آنها (غلظتی از مواد بازدارنده قسمت‌های ۰/۵ گیپ‌سیم آزمایش می‌شود) تعیین شد. اگر چه نانون مطالعات در مورد سیم نانوذرات مورد بررسی قرار گرفتند است‌اما نانون مطالعه ای که سیمین این مواد را در یک میکروکشت انجام داده‌است. اکالی و اوروس نشان داده، این مطالعه تعیین نتایج این نتایج هم‌اکنون در کمی معادل علاوه بر

ستانس سیمین نانوذرات به شناخت بهتر آنها به عنوان مواد ضد باکتری‌ای نیز کمک کند.

مواد و روش‌ها

نانوذرات TiO\textsubscript{2} و ZnO از آزمایش‌گاه دانشگاه علوم پزشکی اصفهان به هدایت قرار گرفتند.

بود. تعداد ۲۰ نمونه نمونه‌برداری گردید و در این نمونه‌بردا...
 tabel1: مقایسه EC50 نانوذرات پس از کشت 22 ساعت باکتری‌ها با حداکثر اطمنیان/95 \%

<table>
<thead>
<tr>
<th>نانوذرات اکسید تیتانیوم</th>
<th>نانوذرات اکسید روز</th>
<th>نانوذرات</th>
<th>حداکثر اطمنیان</th>
<th>حد بالا</th>
<th>حد پایین</th>
<th>NOEC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>(mg/L)</td>
<td>EC50</td>
<td>(mg/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>حد پایین</td>
<td>4566</td>
<td>حد بالا</td>
<td>5366</td>
<td>7/19</td>
<td>4/73</td>
<td>5/47</td>
</tr>
<tr>
<td>کلاستیک</td>
<td>2488</td>
<td>NOEC</td>
<td>2881</td>
<td>3471</td>
<td>2/00</td>
<td>2/83</td>
</tr>
</tbody>
</table>

جدول 3: مقایسه 100 ٪ مرگ و میر باکتری‌ها در اثر مواردی با نانوذرات (mg/L) و NOEC 100 ٪ مرگ و میر باکتری‌ها

<table>
<thead>
<tr>
<th>نانوذرات اکسید تیتانیوم</th>
<th>نانوذرات اکسید روز</th>
<th>نانوذرات</th>
<th>NOEC (mg/L)</th>
<th>NOEC (mg/L)</th>
<th>NOEC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>حفره‌سازی و نانوذرات</td>
<td>(mg/L)</td>
<td>NOEC</td>
<td>(mg/L)</td>
<td>NOEC</td>
<td>NOEC</td>
</tr>
<tr>
<td>نانوذرات پس از کشت 22 ساعت</td>
<td><1932</td>
<td><1159</td>
<td><1/15</td>
<td><5/52</td>
<td><9/44</td>
</tr>
<tr>
<td>باکتری</td>
<td>>1184</td>
<td>>7643</td>
<td>>2/28</td>
<td>>9/44</td>
<td>>9/44</td>
</tr>
</tbody>
</table>

 mortalit rate 100 ٪ مرگ و میر رخ می‌دهد (mortality rate) به ترتیب از طریق محاسبه غلظتی که مرگ و میر در آن 100 ٪ و 99 ٪ بوده، توسط آنالیز پروری در ترم افزار تعیین شد.

SPSS Ver 16.0
شکل 1: دو دوز پاسخ با کانتری ها در غلظت های مختلف نانوذرات اکسید، روی

شکل 2: دو دوز پاسخ با کانتری ها در غلظت های مختلف نانوذرات اکسید، تیتانیوم

(۱۷۵)
mg/L

Haemoglobin (7) are known to be targets for metal ion mediated reactive oxygen species (ROS) production. In this study, the effect of ZnO on the production of ROS was investigated. The results showed that ZnO exposure increased the production of ROS in a dose-dependent manner. The NOEC for ZnO exposure was determined to be 10 mg/L.

Minimal Davis medium (MDM)

Minimal media is a simple, low-cost medium that is used for the cultivation of microbes. It is a mixture of salts, vitamins, and other compounds that provide the necessary nutrients for microbial growth. Minimal media differ from complex media in that they contain only the essential nutrients that are required for growth. Minimal media are used to study the effects of specific nutrients on microbial growth, and to identify the nutritional requirements of different microbial species. They are also used to test the effectiveness of antimicrobial agents and to study the mechanisms of antibiotic resistance.

Reactive Oxygen Species (ROS)

ROS are a group of highly reactive oxygen-containing molecules that are produced as a byproduct of normal cellular metabolism. They include singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. ROS are important in a variety of cellular processes, including oxygen sensing, signaling, and killing of intracellular pathogens. However, excessive production of ROS can lead to oxidative stress, which can damage cellular components and exacerbate disease conditions.

Minimal Davis medium (MDM)

Minimal media is a simple, low-cost medium that is used for the cultivation of microbes. It is a mixture of salts, vitamins, and other compounds that provide the necessary nutrients for microbial growth. Minimal media differs from complex media in that it contains only the essential nutrients that are required for growth. Minimal media are used to study the effects of specific nutrients on microbial growth, and to identify the nutritional requirements of different microbial species. They are also used to test the effectiveness of antimicrobial agents and to study the mechanisms of antibiotic resistance.

Reactive Oxygen Species (ROS)

ROS are a group of highly reactive oxygen-containing molecules that are produced as a byproduct of normal cellular metabolism. They include singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. ROS are important in a variety of cellular processes, including oxygen sensing, signaling, and killing of intracellular pathogens. However, excessive production of ROS can lead to oxidative stress, which can damage cellular components and exacerbate disease conditions.
باکتری کشی متفاوتی داشته باشند که نشان می‌دهد سمت نانوذرات علاوه بر اختار نانویی و نسیب بالای سطح به یک میانی عصر تشکیل دهنده آنها نیز مربوط است. با توجه به نتایج این مطالعه می‌توان گفت از نظر سمتی جاده، به تاریکی و وضع استانداردهای مواده و دفع محسوسی نانوذرات اکسید رژی در مقایسه با نانوذرات اکسید تیتانیوم نازم‌ند مراقبت بیشتر است. به علاوه با مقایسه نتایج مطالعه حاضر با مطالعات قبلی در ارتباط با سمت نانوذرات که در میانی، مانا انجام شده بود این نتیجه گرفته شد که در تغییر اثرات سمت بالاقوه نانوذرات در میانی های مابه‌های است هم‌زمان از روش‌های تعیین سمت نانوذرات در میانی غیرمایع نیز استفاده شود تا عوامل مداخله کننده در این روش‌ها (اثر جیندگی و تجمع پذیری) آشکار گردد و دیده نیست به پتاسیم سمت نانوذرات کسب گردید.

آن ایجاد کنن، با رابین پیشنهاد می‌شود در مورد نانوذرات (که در میانی‌های آب قابلیت جیندگی و تغییر باردارن) همزمان از روش‌هایی که در آنها نانوذرات در یک میانی غیرمایع، تابی شده باشند (همچون روش به کار رفته در مطالعه حاضر) نیز استفاده شود تا اثرات سمت بالاقوه نانوذرات بهتر بر باکتری کروم می‌تواند سوپرپرس با یافته‌های مطالعه حاضر نیز، موارد فوق را تصدیق می‌کند (۲۲).

مقایسه نتایج این مطالعه با معیارهای ارائه‌شده توسط EPA نشان می‌دهد که از نظر سمت حاد، نانوذرات اکسید رژی در رده مواد با سمتی متوسط و نانوذرات اکسید تیتانیوم در رده موادی که عملی‌تر در سرمایه‌های نوآورانه قرار می‌گیرد (۲۲). با رابین از نظر سمتی جاده، به کار گیری و وضع استانداردهای دفع محسوسی نانوذرات اکسید رژی در مقایسه با نانوذرات اکسید تیتانیوم نازم‌ند مراقبت بیشتر است، با این حال سمت مزمن این مواد را تایید از نظر دور ناشت.

نتیجه گیری

این مطالعه نشان داد که سمت حاد نانوذرات اکسید رژی به مرتبه پیش‌تر از سمت حاد نانوذرات اکسید تیتانیوم است. با رابین اکسیدهای فلزی نانوذرات می‌توانند قدرت سمت و

Bioassay for Toxicity Assessment of Zinc Oxide and Titanium Oxide to Escherichia Coli ATCC 35218 and Staphylococcus Aureus ATCC 25923 Bacteria

Naddafi K., Zare M.R., Younesian M., Rastkari N., Alimohammadi M., Mousavi N.
Department of Environmental Health, Faculty of Health, Tehran University of Medical Sciences, Tehran, Iran

Received; 23 January 2011 Accepted; 21 May 2011

ABSTRACT
Background and Objectives: This study was conducted to investigate the toxicity of Titanium Oxide (TiO₂) and Zinc Oxide (ZnO) nanoparticles as two of most widely used nanoparticles. The result of this study can help to designing environmental standard and legislations for nanoparticles.

Materials and Methods: Different concentrations of nano ZnO and TiO₂ nanoparticles were added to nutrient Agar culture media. Then, definite numbers of Escherichia coli and Staphylococcus aureus bacteria were added to culture media and inhibition of these bacteria growth was measured in comparison to controls. Obtained data were analyzed to determine nanoparticles' EC₅₀ and NOEC (No Observed Effect Concentration) using SPSS ver.16 and Probit standard test.

Results: 24-hours EC₅₀ of nano ZnO using E. coli and S. aureus determined to be 5.47 mg/L and 2.38 mg/L respectively. In addition, 24-hours EC₅₀ of nano TiO₂ using E. coli and S. aureus determined to be 5366 mg/L and 3471 mg/L respectively. In the case of ZnO nanoparticles, no observed effect concentration determined to be 1.15 and 3.28 mg/L for E. coli and S. aureus respectively and in the case of TiO₂ nanoparticles no observed effect level determined to be 1937 and 1184 mg/L for E. coli and S. aureus respectively.

Conclusion: This study showed that acute toxicity of nano ZnO is by far more than that of nano TiO₂. Regarding the EPA acute toxicity criteria, nano ZnO is categorized as moderately toxic and nano TiO₂ is categorized as practically non toxic. Hence, regarding the acute toxicity, in recommending exposure criteria and environmental disposal standards, compared to nano TiO₂, nano ZnO requires more attention.

Key words: Nanoparticle, Zinc Oxide, Titanium Oxide, Toxicity, Bioassay, Escherichia coli, Staphylococcus aureus

*Corresponding Author: zaremohammadi1363@yahoo.com
Tel: +98 21 88954914 Fax: +98 21 88950188