مطالعه کارایی کربن فعال اصلاح شده با محلول کلریدآمونیوم (NAC) در حذف سم متولاکلر از آب آلوده

پریسا برات پور، سید غلامرضا موسی ی، احمد اله آبادی، سکیبی شکوهیان

چکیده

زمینه و هدف: با پیشرفت صنایع و افزایش جمعیت و پیش‌گیری از آلاینده‌های شیمیایی نوپدیدی وارد منابع آب‌های طبیعی شده‌اند. این مطالعه بررسی بکارگیری کربن فعال اصلاح شده با NAC (کلریدآمونیوم) برای حذف جاذب متولاکلر از آب‌های آلوده مورد بررسی قرار گرفت.

روش بررسی: تأثیر متغیرهای اساسی از جمله pH محلول، غلظت NAC محلول، pH محلول و زمان واکنش بر حذف متولاکلر توصیف شد. نتایج نشان داد کربن فعال استاندارد (SAC) با کارایی حذف در سه تا ۲ چند برابر کربن فعال اصلاح شده (NAC) در حذف متولاکلر برابر با NAC و کربن فعال استاندارد (SAC) بود.

واژگان کلیدی: باقیماندن مسئول، متولاکلر، آب آلوده، نتایج

اطلاعات مقاله:

پست الکترونیک نویسنده مسئول: moussavi@modares.ac.ir

Published online: http://ijhe.tums.ac.ir

Available online: http://ijhe.tums.ac.ir

تأثیر اصلاح شیمیایی کربن فعال استفاده از محلول کلرید آمونیوم (NAC) بر روی حذف متولاکلر در غلظت اولیه در اکستنسر ترکیبات آفت‌بار بر روی فعال و غیرو فعال مطالعه کارایی کربن فعال انجام گردید.

مقدمه
امروزه نگرانی اصلی حاصل از فعل‌های کشاورزی، ورود آفت‌کش‌ها به محیط زیست است. الکترود نیز نماینده این مواد از رویاهای حاصل از زمانی کشاورزی، دفع نامناسب فاضلاب حاصل از شستشوی ظروف خالی آفت‌کش‌ها و نگهداری کنترل تنش‌های فاضلاب حاصل از صنایع تولیدکننده این مواد حاصل می‌شوند. از انتخاب روش‌های استانداردی به منظور بهبود خواص فعال‌های آمونیاک در درجه حرارت بالا است که معنی به تویید کمالیت جهت واقع در ساختار کربن فعال شده که می‌تواند در دسترس بودن سطح کربن را بهبود بخشند. از سوی دیگر، چنین حواری مفهومی در همراه با محتوای کربن بالای آن می‌تواند روش‌های گرافیتی برگر ایجاد کند که توانایی بالایی در تأمین مواد اولیه تولید آزمایشگاهی دارند (1). بنابراین به منظور بررسی بر این نوع کربن در مطالعات اجرایی گروه تحقیقاتی ما در حذف ترکیبات مختلف به منظور اصلاح شیمیایی کربن فعال با مواد متنوعی به منظور بهبود قدرت حذف در این روش‌ها، ترکیبات قرنیزی مورد بررسی قرار گرفت. تأثیر متغیرهای pH مطالعه، فشار کربن فعال، غلظت اولیه نسبت به جمله SHC-2 کربن و زمان واکنش بر حذف متولاکلر منجر به تولید متولاکلر در آب نسبید.

مواد و روش‌ها
روش‌های مختلف دانستنی که آفت‌کش‌ها به طور کامل معنی‌داری ندارند. روشهای مختلف حذف آفت‌کش‌ها شامل روش‌های بیولوژیکی (12)، روش‌های شیمیایی (13) و روش‌های الکتروشیمیایی (14) می‌باشند. فرمول‌های کربن و آرامکاری با ویژگی شیمیایی (15) استراتژی‌های ساخت و جدایی (15) هستند. عوامل کابینهGTG بهبود در حذف چربی به دست آمده از روش‌های مختلف اصولی است. بیش از این روشهای فعال باید بهبود داشته باشد. برای انجام این پروژه باید روش‌هایی از مراحل مختلفی انجام گردید.

روشهای مختلفی مدترانه نشان داده که آفت‌کش‌ها به طور کامل معنی‌داری ندارند. دسته‌بندی‌های مختلف روش‌های مختلف حذف آفت‌کش‌ها شامل روش‌های بیولوژیکی (12)، روش‌های شیمیایی (13) و روش‌های الکتروشیمیایی (14) می‌باشند.

رفتار کربن و آرامکاری با ویژگی شیمیایی (15) استراتژی‌های ساخت و جدایی (15) هستند. عوامل کابینهGTG بهبود در حذف چربی به دست آمده از روش‌های مختلف اصولی است. بیش از این روشهای فعال باید بهبود داشته باشد. برای انجام این پروژه باید روش‌هایی از مراحل مختلفی انجام گردید.
طرح سیستم آزمایش‌گاهی مطالعه جذب در مقياس

تأیید شده آزمایش‌های پارامتریک در یک پیشرفت‌های انجام شد در هر
50 mL تست نشان داد که این مطالعه می‌تواند برای بررسی pH
میکروگری (Jenway) مورد بررسی قرار گیرد.

روش آزمایش مطالعه جذب در مقياس تایپوئست

غلاف مولکولی در محلول توسط یک دستگاه اسکیمومتر
Unico-UV 2100 nm (Jenway) نمونه توسط pH
پس از تهیه نمونه و مخلوط با سرعت 100 مخلوط فردی. غلاف
بایکماینده NM 75 μm به صاف سازی با فیلتر استون سلول
توسط دستگاه اسکیمومتر قرار گرفت.

برای محاسبه کارایی جذب از تفاوت غلافت ویژه (C0)
و غلافت دوم این مطالعه در پایان هر واکنش (C1) بر حسب
استفاده شده کارایی جذب از معادله 1 و ظرفیت
جذب از معادله 2 محاسبه شد.

\[
RE(\%) = \frac{(C_0 - C_1)}{C_0} \times 100 \tag{1}
\]

\[
q_e (\frac{mg}{g}) = \frac{(C_0 - C_1)}{m} \tag{2}
\]

- مراحل و مکانیسم جذب

برای برای جذب کردن pH بهینه برای جذب مولکولی
تعدادی اغلب انتخاب و با حجم نمونه‌های 50 mL و دوز
گازبان 100 g به مدت اختلال 10 min اثر اثر برای دوم در رنگ
مانند شد.

- اثر غلظت آلاینده و زمان تاماس

برای pH 5-50 mg/L مخلوط مولکولی
43 min اختلال از از
با 100 g، در زمان می‌گرفت.

- تعادل جذب و مدل ایزوترم آنها

آزمایش ایزوترم جذب در دمای ناحیه به غلظت‌های
5-50 mg/L مخلوط و دور جذب 3h به مدت 0.5 g/L
مانند شد.

سید غلامرضا موسوی و همکاران
ijhe.tums.ac.ir

- طرح سیستم آزمایش‌گاهی مطالعه جذب در مقياس

تأیید شده آزمایش‌های پارامتریک در یک پیشرفت‌های انجام شد در هر
50 mL تست نشان داد که این مطالعه می‌تواند برای بررسی pH
میکروگری (Jenway) مورد بررسی قرار گیرد.

روش آزمایش مطالعه جذب در مقياس تایپوئست

غلاف مولکولی در محلول توسط یک دستگاه اسکیمومتر
Unico-UV 2100 nm (Jenway) نمونه توسط pH
پس از تهیه نمونه و مخلوط با سرعت 100 مخلوط فردی. غلاف
بایکماینده NM 75 μm به صاف سازی با فیلتر استون سلول
توسط دستگاه اسکیمومتر قرار گرفت.

برای محاسبه کارایی جذب از تفاوت غلافت ویژه (C0)
و غلافت دوم این مطالعه در پایان هر واکنش (C1) بر حسب
استفاده شده کارایی جذب از معادله 1 و ظرفیت
جذب از معادله 2 محاسبه شد.

\[
RE(\%) = \frac{(C_0 - C_1)}{C_0} \times 100 \tag{1}
\]

\[
q_e (\frac{mg}{g}) = \frac{(C_0 - C_1)}{m} \tag{2}
\]

- مراحل و مکانیسم جذب

برای برای جذب کردن pH بهینه برای جذب مولکولی
تعدادی اغلب انتخاب و با حجم نمونه‌های 50 mL و دوز
گازبان 100 g به مدت اختلال 10 min اثر اثر برای دوم در رنگ
مانند شد.

- اثر غلظت آلاینده و زمان تاماس

برای pH 5-50 mg/L مخلوط مولکولی
43 min اختلال از از
با 100 g، در زمان می‌گرفت.

- تعادل جذب و مدل ایزوترم آنها

آزمایش ایزوترم جذب در دمای ناحیه به غلظت‌های
5-50 mg/L مخلوط و دور جذب 3h به مدت 0.5 g/L
مانند شد.

سید غلامرضا موسوی و همکاران
ijhe.tums.ac.ir
جدول 1- ویژگی‌های ساختاری کربن NAC و SAC

<table>
<thead>
<tr>
<th>NAC (کربن)</th>
<th>SAC (کربن)</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>سطح ویزه BET</td>
</tr>
<tr>
<td>1042 1042</td>
<td>4.74 cm /g</td>
<td>حجم رزونه ها</td>
</tr>
<tr>
<td>2027</td>
<td>23.5 cm /g</td>
<td>حجم نک تک لایه</td>
</tr>
<tr>
<td>46/2 2/23</td>
<td>69/8</td>
<td>متوسط قطر رزونه ها</td>
</tr>
<tr>
<td>108/9</td>
<td>7/2</td>
<td>تابث C</td>
</tr>
<tr>
<td>17/2</td>
<td>---</td>
<td>pHpzc</td>
</tr>
</tbody>
</table>

طراحی شکل فیبرهای فشاره با یکسکی:
سطح صاف با منافذ بارکنه در کانالهای صاف مشابه، موئی و طولاتی
ادرار هیدروکسیل، کربنولیت و کربوکسیل (با دانشیت بیشر)
درصد سطح مرفولوژی سطح
گروهی عامل سطح

نمودار 1- اثر pH محلول بر درصد جذب متوالکثر توسط دو SAC و NAC کربن

متوالکثر کارایی جذب متوالکثر از 0.5 mg/L تا 50 mg/L بین کم 167/13 درصد کاهش می یابد اما درفیت جذب از 50 mg/L 166/13 به به افزایش می یابد.
بررسی تاثیر دور جذب بر درصد جذب متوالکثر از آب آلوده
در این مطالعه از دوز جذب 1/5 10/15 و 0/15 g/L و 50 mg/L برای حدف SAC و NAC برای حدف 50 mg/L و 10/15 g/L و 0/15 g/L از حجم 10 ml آزمایش گردیده شد. که با افزایش دوز جذب NAC کارایی 228
در حالی که تعادل نشان می‌دهد به طور کامل از ایزوترم‌های لانگموروی و فرندولچ برای توصیف رابطه بین مقدار جذب جزء حل شونده بر روی جاذب و همچنین غلظت تعادلی آن در محلول استفاده می‌شود (۲۴). برای محاسبه ایزوترم لانگموروی از معادله ۳ استفاده می‌شود.

\[\frac{C_e}{q_e} = \frac{1}{bq_{\text{max}}} + \frac{C_o}{q_{\text{max}}} \]

(۳)

نمونه‌برداری تأثیر دوز جاذب (الف) SAC و (ب) NAC بر جذب متولاکلر در حالت تعادل نشان می‌دهد. به طور کامل از ایزوترم‌های لانگموروی و فرندولچ برای توصیف رابطه بین مقدار جذب جزء حل شونده بر روی جاذب و همچنین غلظت تعادلی آن در محلول استفاده می‌شود (۲۴). برای محاسبه ایزوترم لانگموروی از معادله ۳ استفاده می‌شود.

\[\frac{C_e}{q_e} = \frac{1}{bq_{\text{max}}} + \frac{C_o}{q_{\text{max}}} \]

(۳)

یکی از ایزوترم‌های اولیه مورد استفاده در آزمایش دوز جاذب به ۰.۵ g/L کارایی کاهش یافت. نیز همانطور که در نمودار ۳ آمده است با SAC در جاذب نیز همانطور که در نمودار ۳ آمده است با SAC نیز همانطور که در نمودار ۳ آمده است با SAC نیز همانطور که در نمودار ۳ آمده است با SAC در جاذب

SAC = ۰.۱ g/L

SAC = ۰.۱۵ g/L

SAC = ۰.۳ g/L

SAC = ۰.۵ g/L

SAC = ۰.۵ g/L
باستد سیستم جذب مطلوب، و در صورتی که $R_l > 1$ باشد، نامطلوب و $R_l = 1$ جذب خراب و $R_l < 1$ خواهد بود.

اِیزوَترم فرودنلیج

برای محاسبه اِیزوَترم فرودنلیج از معادله ۵ استفاده می‌شود.

$$\ln q_e = \ln K_f + \frac{1}{n} \ln C_e$$

که در این معادله K_f پارامتر خصوصیت ظرفیت جذب $\ln q_e$ به شدت جذب اشاره دارد. با ترسیم $\ln q_e$ برای $\ln C_e$ در یک دو نتیجه می‌آید. برای تعیین اِیزوَترم اقدام به مقدار کربن نیاز مانند q_{max} و مقدار دوم R_l / q_{max} می‌گردد. در این معادله R_l و q_{max} مقدار کربن فرودنلیج با غلظت های گذشته به جاذب استفاده می‌شود.

$$R_L = \frac{1}{1 + b C_i}$$

که در این معادله R_L یک فاکتور به جاذب C_i غلظت اولیه جزء حل شونده (mg/L) است. در صورتی که $R_L > 1$, q_{max} R_l یک فاکتور بوده جاذب C_i غلظت و q_{max} به جاذب استفاده می‌شود.

جدول ۲- اطلاعات حاصل از اِیزوَترم لانگمویر و فرودنلیج استفاده شده در جذب متولکلر بر روی SAC و NAC

<table>
<thead>
<tr>
<th>جاذب</th>
<th>واحد</th>
<th>پارامتر</th>
<th>ایزوَترم</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAC</td>
<td>mg/L</td>
<td>b</td>
<td>q_{max}</td>
</tr>
<tr>
<td>SAC</td>
<td>L/mg</td>
<td>K_f</td>
<td>R_l</td>
</tr>
</tbody>
</table>

SAC و NAC - بررسی سیستم جذب متولکلر توسط جاذب SAC و NAC در جذب متولکلر با غلظت ۵۰ mg/L در جذب متولکلر با غلظت ۵۰ mg/L در جذب متولکلر با غلظت ۵۰ mg/L. اطلاعات حاصل از آنالیز ایزوَترم لانگمویر روی SAC و ارائه شده در جدول ۲. مقدار R^2 (ضریب تغییر) در ایزوَترم لانگمویر نسبت به اِیزوَترم فرودنلیج بین یک است. مقدار K_r برای پارامتر بودن بعد از مقدار اِیزوَترم استخراج ناگمویر است. مقدار R_l می‌شود بین ۰ و ۱ است.
بحث

در توضیح اثر pH به توجه به اینکه جاذب‌های pHzpce به ترتیب 6.9 و 7/3، از در pH به پایین سطح جاذب‌های مثبت و در pHzpce از پایین سطح جاذب منفی خواهد بود. از طرفی pHzpce برای مولکول‌های pKa و جذب متولکلر را خواهی داشت. ۲۲ نمونه pH به ترتیب با گرمسیر خشک و ترکیبی در pH تعریف شده و در سطح pH از ۲۲ تا ۱۲، این نمونه pH می‌تواند تأثیر منجر به جذب مولکول‌ها با توجه به pHzpce در سطح pH منفی باشد و با نتایج الکترو استاتیک سبب دفع مولکول‌ها از محل جاذب جاذب تولکلر در جذب خواهد شد. در مطالعه Moussavi و همکاران برای حذف آمونیک سیلیک از این در جاذب استفاده شد و نتایج نشان داد که حذف‌گر جاذب آمونیک سیلیک روي pH و pHzpce در NAC و SAC به ترتیب pH و pHzpce با افزایش pH به گزارش کاهش پیدا کرد. از نگاه pH موجود در مولکول آمونیک سیلیک به کربنیل‌سازی (COOH) و جذب pHzpce pH تأثیر نتایج مولکول‌ها از مطالعه Moussavi و همکاران به ترتیب pHzpce یا pH در NAC و SAC به ترتیب pH و pHzpce در NAC و SAC به ترتیب pH و pHzpce (PSO) در این معادله، k1 و k2 تابیت سرعت‌های واکنش، q1، طرفی pH در زمان t و طرفی جذب در هنگام تعادل است. به ترتیب با گرمسیر خشک و ترکیبی در pH تعریف شده و در سطح pH از ۲۲ تا ۱۲، این نمونه pH می‌تواند تأثیر منجر به جذب مولکول‌ها با توجه به pHzpce در سطح pH منفی باشد و با نتایج الکترو استاتیک سبب دفع مولکول‌ها از محل جاذب جاذب تولکلر در جذب خواهد شد.

جدول ۳- پارامترهای حاصل از سیمپلیک شیب درجه دوم

<table>
<thead>
<tr>
<th>نوع جاذب</th>
<th>غله جاذب (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAC</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>H= k1q0</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td></td>
</tr>
<tr>
<td>k1</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td></td>
</tr>
</tbody>
</table>

(\ln q_e - \ln q_t) = \ln q_e - k_1 t \quad (6)
\frac{t}{q_e} = \frac{1}{k_2 q_e} + \frac{t}{q_e} \quad (7)

که در این معادله، k1 و k2 تابیت سرعت‌های واکنش، q1، طرفی pH در زمان t و طرفی جذب در هنگام تعادل است. به ترتیب با گرمسیر خشک و ترکیبی در pH تعریف شده و در سطح pH از ۲۲ تا ۱۲، این نمونه pH می‌تواند تأثیر منجر به جذب مولکول‌ها با توجه به pHzpce در سطح pH منفی باشد و با نتایج الکтро استاتیک سبب دفع مولکول‌ها از محل جاذب جاذب تولکلر در جذب خواهد شد.

\[\Delta q = \sqrt{\frac{\sum (q_{exp} - q_{model}/q_{exp})^2}{n - 1}} \quad (8) \]

در این معادله، qmodel و qexp ظرفیت جذب محاسبه شده از آزمایش و مدل هستند n هم میزان داده‌های آزمایشی است. اطلاعات سیمپلیکی جذب متولکلر بر روی SAC و NAC در سطح pHzpce pH در هنگام تعادل جذب pH به ترتیب pH و pHzpce در NAC و SAC به ترتیب pH و pHzpce در NAC و SAC به ترتیب pH و pHzpce (PSO) در این معادله، k1 و k2 تابیت سرعت‌های واکنش، q1، طرفی pH در زمان t و طرفی جذب در هنگام تعادل است.

<table>
<thead>
<tr>
<th>پارامترهای سیمپلیک شیب درجه دوم</th>
<th>غله جاذب (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H= k1q0</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td></td>
</tr>
<tr>
<td>k1</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3- پارامترهای حاصل از سیمپلیک شیب درجه دوم

<table>
<thead>
<tr>
<th>نوع جاذب</th>
<th>غله جاذب (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAC</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>H= k1q0</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td></td>
</tr>
<tr>
<td>k1</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td></td>
</tr>
</tbody>
</table>

(\ln q_e - \ln q_t) = \ln q_e - k_1 t \quad (6)
\frac{t}{q_e} = \frac{1}{k_2 q_e} + \frac{t}{q_e} \quad (7)

که در این معادله، k1 و k2 تابیت سرعت‌های واکنش، q1، طرفی pH در زمان t و طرفی جذب در هنگام تعادل است. به ترتیب با گرمسیر خشک و ترکیبی در pH تعریف شده و در سطح pH از ۲۲ تا ۱۲، این نمونه pH می‌تواند تأثیر منجر به جذب مولکول‌ها با توجه به pHzpce در سطح pH منفی باشد و با نتایج الکترو استاتیک سبب دفع مولکول‌ها از محل جاذب جاذب تولکلر در جذب خواهد شد.

\[\Delta q = \sqrt{\frac{\sum (q_{exp} - q_{model}/q_{exp})^2}{n - 1}} \quad (8) \]

در این معادله، qmodel و qexp ظرفیت جذب محاسبه شده از آزمایش و مدل هستند n هم میزان داده‌های آزمایشی است. اطلاعات سیمپلیکی جذب متولکلر بر روی SAC و NAC در سطح pHzpce pH در هنگام تعادل جذب pH به ترتیب pH و pHzpce در NAC و SAC به ترتیب pH و pHzpce در NAC و SAC به ترتیب pH و pHzpce (PSO) در این معادله، k1 و k2 تابیت سرعت‌های واکنش، q1، طرفی pH در زمان t و طرفی جذب در هنگام تعادل است.

<table>
<thead>
<tr>
<th>پارامترهای سیمپلیک شیب درجه دوم</th>
<th>غله جاذب (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H= k1q0</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td></td>
</tr>
<tr>
<td>k1</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3- پارامترهای حاصل از سیمپلیک شیب درجه دوم

<table>
<thead>
<tr>
<th>نوع جاذب</th>
<th>غله جاذب (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAC</td>
<td></td>
</tr>
<tr>
<td>NAC</td>
<td></td>
</tr>
<tr>
<td>H= k1q0</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td></td>
</tr>
<tr>
<td>k1</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td></td>
</tr>
</tbody>
</table>
در بررسی ایزوتروم جذب متولاکلر هم استفاده کرده که در جدول 2 نشان داده شد، مقدار R^2 (ضریب تغییر) در ایزوتروم انتگری به نسبت به ایزوتروم انتگری بیشتر است. مقدار R^2 یک خریدر بعد و به راحتی میتواند استخراج می‌شود بین 0 و 1 است که نشان می‌دهد جذب متولاکلر بر روی جاذب مطلوب است.

بیشتر بودن ظرفیت جذب برای جذب SAC نسبت به SAC می‌تواند با در نظر گرفتن مقدار ثابت C توضیح داده شود. مقدار C نشان دهنده شدت پر کردن مولکول در موقعیت جذب روي NAC می‌باشد. پر کردن NAC با مولکول می‌تواند بر روی NAC روند نسبت به مخلوط جذب روي SAC باعث کاهش نسبت به مخلوط جذب روي بفرکنش بین مولکولهای متولاکلر با مخلوط جذب SAC می‌شود. این نتیجه حاصل می‌شود. افزایش مقدار NAC برای جذب متولاکلر روی کربن فعال با افزایش جذب متولاکلر روی کربن فعال با pH به بالاتری 6 را می‌توان به دلیل افزایش یون هیدروکسیل تنش شده در محلول و سپس رفتار با آنیون -COO- لاور NAC می‌شود.

کاهش کارایی جذب از فعالیت غلظت متولاکلر را می‌توان به نتیجه داشت. جاذب شدن متولاکلر در فرآیند و به بیشتر از محققان سطحی بر روی جاذب یا کامل شدن ظرفیت است. به طور کلی، مشخص می‌شود که میزان جذب تغییرات بیشتری برای جذب متولاکلر می‌شود. این نتایج مشابه نتایج SAC هم است.

مقدار ثابت pH می‌تواند بر روی تغییرات در نتایج جاذب شدن متولاکلر باعث کاهش نسبت به NAC باعث کاهش نسبت به SAC می‌شود. افزایش ظرفیت جذب متولاکلر را می‌توان به دلیل افزایش یون هیدروکسیل تنش شده در محلول و سپس رفتار با آنیون -COO- لاور NAC می‌شود. به طور کلی، مشخص می‌شود که میزان جذب تغییرات بیشتری برای جذب متولاکلر می‌شود. این نتایج مشابه نتایج SAC هم است.
نتیجه‌گیری
نکته‌نامه‌های جهت جستجوی جذب NAC که هیچ محدودیتی در محل جذب NAC وجود ندارد و جذب توسط غلتک جاذب محدود نمی‌شود، با این توصیه می‌بایست در میزان انتقال جرم شما نمود (32).

منابع
12. Verstraeten IM, Thurman EM, Lindsey ME, Lee EC, Smith RD. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply. Journal of...

Investigating the performance of carbon chemically activated with ammonium chloride for adsorption of metolachlor in the contaminated water

P Baratpour¹, G Moussavi¹*, A Alahabadi², E Fathi¹, S Shekoohiyan¹
1- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran

*Corresponding Author: moussavi@modares.ac.ir

ABSTRACT

Background and Objective: With industrial development and population growth, the emerging contaminants enter into the natural water resources. Therefore, adsorption potential of Ammonium Chloride-induced activated carbon (NAC) to remove metolachlor pesticide from contaminated water was investigated in this study.

Materials and Methods: The effects of operational conditions including solution pH, NAC concentration, metolachlor initial concentration and contact time on the removal of metolachlor by Ammonium Chloride-induced activated carbon (NAC) and standard activated carbon (SAC) were studied.

Results: Over 92.4% of 50 mg/L metolachlor was adsorbed using 0.3 g NAC/L within 5 min, and by increasing the reaction time to 60 min the removal efficiency reached to 100%. Under similar experimental conditions, standard activated carbon (SAC) could only adsorb 20% of metolachlor within 5 min and increase of contact time to 40 min caused the improvement of metolachlor adsorption onto SAC to 48%. The adsorption onto SAC was not influenced by the contact time over 40 min. Kinetic analysis showed that experimental adsorption data for both NAC and SAC were best fitted to the pseudo-second-order model. The maximum adsorption capacities of metolachlor onto NAC and SAC calculated by the Langmuir model were 344.8 and 238.1 mg/g, respectively.

Conclusion: Generally, these results showed that developed NAC was an efficient adsorbent with high removal efficiency for eliminating the halogenated pesticides from the contaminated water streams.