بهینه‌سازی فرآیند انعقاد الکتریکی در تصفیه فاضلاب نساجی با استفاده از روش سطح پاسخ

پژوهشگر:
دانشجوی کارشناسی ارشد دانشگاه تربیت مدرس، تهران، ایران

دانشیار گروه مهندسی بهداشت محیط، دانشکده علوم پزشکی دانشگاه تربیت مدرس، تهران، ایران

چکیده
زمینه و هدف: انعقاد الکتریکی (EC) به عنوان یک روش الکتروشیمیایی جهت غلبه بر مشکلات تکنولوژی‌های نگهداری (COD) معروف و یکی از مشکلات تکنولوژی‌های رنگ‌های نساجی است. هدف این مطالعه بهینه‌سازی فرآیند EC برای رنگ‌های نساجی و حذف COD از یک فاضلاب نساجی با استفاده از روش سطح پاسخ بهینه سازی است.

روش بررسی: در این تحقیق، مقیاس آزمایشگاهی راکتور انعقاد الکتریکی جهت تصفیه فاضلاب نساجی طراحی و ساخته شد. CO به عنوان متغیر مستقل و pH به عنوان متغیر مستقل و رنگ به عنوان متغیر غلیظ در ترکیب آزمایش‌های متغیرهای انتخابی آزمایش‌های تکراری راکتور انعقاد الکتریکی صورت می‌گرفت.

نتایج گیری: نتایج تجربی نشان داد که فرآیند انعقاد الکتریکی یک فرآیند کارامد و امیدبخش برای رنگ‌های نساجی است. تحت شرایط بهینه بهینه‌سازی، مقادیر تجربی با مقادیر شبیه‌نشده نسبت مدل و موفقیت مستقل است.

واژگان کلیدی: انعقاد الکتریکی، فاضلاب نساجی، رنگ‌های نساجی، بهینه‌سازی، روش سطح پاسخ

moussavi@modares.ac.ir
مقاله

فناصیره ناشی از فرانگریهای رنگارنگی و تکمیل در صنعت نساجی، می‌باید قابلیت توجه از آلودگی است که دارای رنگ شدید، اکسیژن مورد نیاز شیمیایی بالا pH منتفی (اسبیده یا باریک بسته برابر) در مورد فرانگریهای ساده، می‌باشد (در اختلاف با فرانک، مورد رنگ‌آمیزی برای کاهش میزان آنتی‌کیستی نیازمند دفع، زمان واکنش (22):

4Fe(s) + 10H2O(l) + O2(g) → 4Fe(OH)3(s) + 4H2(g)

واقعی نساجی سودمند است. مکانیسم فرآیند انعقاد الکتریکی صورت گرفته است. بنابراین، با توجه به مزایای منحصر به فرد و کاهش الکتریکی در حذف آلاینده‌هایی همچون حذف فنل از محیط ساده، قابلیت انتخاب، انعطاف‌پذیری، سازگاری با محیط‌زیست، ایمنی و از نظر اقتصادی مفید به صورت مستحکم است. بنابراین، به دلیل مقاومت نسبت به نور، فعالیت بیولوژیکی و دیگر شرایط مفیدی برای تجربه‌کننده، امکان آلودگی جدی محتمل است. به‌طور محدود، این ها (3) این در حالیست که سالانه حدود 100 هزار نرگ مختلف در سراسر دنیا به میزان 70,000 ton حدود 70 تونل می‌گردد (6). شرایط آلاینده‌های رنگی با بایستی قبل از تخلیه نهایی جهت دستیابی به استانداردهای قانونی و اخلاقی اخلاقی اخلاقی بهینه سازی فرآیند الکتریکی...
کربنات پودر، یک منبع تغذیه مستقیم برای سیاست‌های حیاتی، یک سیستم هویت‌دهنده مجزا به یک دیفیوزور حباب‌زدایی بیزی برای قرار گرفتن Al2O3 و Fe2O3 در نهایت اخلاق و نیک اکسیداسیون فلزات باعث انعقاد و ایجاد لطمه و در نهایت حذف رنگ و مواد آن می‌گردد. قبل از اجرای فرآیندهای انعقاد الکتریکی در مقیاس کامل، نیاز به تعیین شرایط بهینه کارکرد فرآیند در مقیاس آزمایش‌گاهی است. بر این اساس، هدف اصلی این تحقیق بررسی اثرات عوامل اصلی عملکردی بر روی رنگ‌های فرآیند الکتریکی در تصفیه فاضلاب است.

Response Surface در این مطالعه، از روش سطح بایسک (Methodology) جهت طراحی آزمایشات و شرایط بهینه استفاده شده است. این شاخه از روش‌های سطح پاسخ RSM یکی از شاخه‌های طراحی تجربی استفاده می‌شود و یک ابزار اساسی در توسعه فرآیندهای جدید، بهینه‌سازی عملکرد آنها و بهبود طراحی و فرآیند ساخته‌های جدید است. در این مطالعه، هدف اصلی این تحقیق بررسی اثرات عوامل اصلی عملکردی بر روی رنگ‌های فرآیند الکتریکی در تصفیه فاضلاب است. این متغیرها شامل pH، مقدار الکترود، بافت موثر بر رویی آن مورد جدول 1. همچنین تأثیر pH در تقسیم‌بندی فرآیند الکتریکی بر روی رنگ‌های فرآیند الکتریکی در تصفیه فاضلاب نساجی است. این متغیرها شامل pH، مقدار الکترود، بافت موثر بر رویی آن مورد جدول 1.

مواد و روش‌ها
- نمونه‌های فاضلاب مورد استفاده برای آزمایشات انعقاد الکتریکی از مواد فاضلاب صنعت نساجی و سایر مواد فاضلاب صنعت نساجی تهیه گردید. این آزمایشات شامل pH، مقدار الکترود، بافت موثر بر رویی آن مورد جدول 1.

- مورد استفاده. مواد فاضلاب صنعت نساجی شامل pH، مقدار الکترود، بافت موثر بر رویی آن مورد جدول 1.

- سیستم الکتریکی و روش
- سیستم الکتریکی و روش
بنابراین، این میزان طول موج برای انتخاب کننده رنگ مناسب به دست‌آورد. راندمان حذف رنگ با استفاده از معادله

\[\% \text{ کاهش جذب} = \frac{(A_0 - A) \times 100}{A_0} \]

که در آن \(A_0 \) و \(A \) میزان جذب نری و نرگی قبل و بعد از فرآیند انعقاد الکتریکی است (1). میزان اکسیژن مورد نیاز شیمیایی (دستگاه راکتوری مدل WTW-CR2) نیز توسط دستگاه راکتوری (مدل Closed reflex، Colorimetric) روی استاندارد دارنده (method اندازه‌گیری گردید. هدایت الکتریکی با استفاده از دستگاه HACK ORION مورد pH توسط استاندارد مورد (JENWAY 3505) pH شد. و سنجش قرار گرفت. شدت جریان توسط دستگاه با قدرت تامین گردید (SANJESH, TEK8051 DC DC)

جدول 1. مشخصات اصلی نمونه فاضلاب کاروانه‌های نهایی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>میزان</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu s/cm)</td>
<td>7/5</td>
</tr>
<tr>
<td>pH</td>
<td>7/5</td>
</tr>
<tr>
<td>کدیورت</td>
<td>23/8</td>
</tr>
<tr>
<td>میزان اکسیژن مورد نیاز شیمیایی</td>
<td>23/8</td>
</tr>
<tr>
<td>طول موج حذف رنگ جذب</td>
<td>520 nm</td>
</tr>
</tbody>
</table>

Response Surface طراحی تحریکی با روش سطح پایه (Method طراحی تحریکی با روش سطح پایه)

در این تحقیق، عملکرد رنگ‌گذاری و حذف فاضلاب با استفاده از فرآیند الکترولیزی با روش سطح پایه از دستگاه های تخصصی طراحی گردید. Design Expert 7/0 طراحی پاسخ توزیع نرم‌افزاری با استفاده از آزمایشات تطابق با استفاده از تعداد دمایی گزینه‌های جهت انتخاب نقطه‌ها برای طراحی ترکیبی در یک ناحیه محدود شده به کار

شکل 1. تصویر شماتیک سیستم مورد بررسی

- نژاد و تحمل

نمونه‌های فاضلاب جهت تعیین میزان جذب در طول موج \(pH \) حداکثر هدایت الکتریکی، کدورت و میزان اکسیژن مورد نیاز شیمیایی در قبل و بعد از فرآیند انعقاد الکتریکی مورد تعیین و تحمل قرار گرفتند. عملکرد فرآیند انعقاد الکتریکی در تصویب فاضلاب رنگی رنگی مورد قرار گرفت. یک دستگاه سنج فرآیند (UNICO) جهت تعیین میزان حذف رنگ از طریق کاهش درصد حذف در حداکثر طول موج مورد استفاده قرار گرفت. مشخص گردید که فاضلاب در طول موج 650 nm حداکثر جذب را دارد.
رو. این معیار، نقطه‌هایی را به طور کلی انتخاب می‌کند. به طوری که میانگین ضرایب رگرسیون مدل به حداقل رسید (24). در تحقیق حاضر، متغیرهای مستقل شامل شدت جریان، زمان و کلرود در دو pY pH و جنس الکترود در دو D-optimal سطح بالا و پایین در طراحی کدگذاری شدند. در حالی که رنگ‌دایی و حذف COD کدگذاری شدند و در 44 می‌باشد.

\[R^2 = 1 - \frac{SS_{\text{_residual}}}{SS_{\text{model}} + SS_{\text{residual}}} \] \hspace{1cm} (3)
یافته‌ها

در اولین مرحله از تحقیق، اثر متغیرهای بهره‌برداری شدت جریان، زمان واکنش، pH جن و اکسیژن مورد بررسی قرار گرفت. در جدول ۱ متغیرهای وابسته فیزیکی نشان داده شده است. در دومین مرحله، اهداف اصلی شامل انتخاب بهینه جریان، زمان واکنش، pH جن و اکسیژن مورد بررسی قرار گرفت.

\[\begin{bmatrix} R^2 = 0.82; R_{adj} = 0.78; \text{adequate precision} = \infty \end{bmatrix} \]

\[\begin{bmatrix} R^2 = 0.82; R_{adj} = 0.78; \text{adequate precision} = \infty \end{bmatrix} \]

مناسب برای دستیابی به درصد بالایی از رنگ‌دهی و حذف فاضلاب نساجی بود. آزمایشات به صورت سه‌نفره در سه طرح بررسی (D-optimal) باعث بهبود یافتن نتایج آزمایشات ارزیابی گردید و عملکرد تقیبی درصد حذف رنگ و اکسیژن مورد نیاز شیمیایی به ترتیب طبق معادلات (۴) و (۵) به دست داد:

\[y_1 = 16.19 x_1 + 1.27 x_2 + 3.47 x_3 + 4.96 x_4 + 7.87 x_5 + 9.95 x_6 + 5.44 x_7 - 2.38 x_2 x_3 \]

\[-5.54 x_2 x_4 + 9.76 x_3 x_4 + 9.05 x_5^2 - 24.65 x_6^2 - 5.69 x_7^2 + 58.8 \]

\[y_2 = 4.41 x_1 + 7.31 x_2 - 6.15 \]

\[x_1 - 2.68 x_2 - 1.79 x_3 + 5.6 x_4 + 0.6 x_5 + 4.31 x_6 - 7.4 x_7 - 0.15 x_1 x_4 + 51.43 \]

جدول ۱: نتایج ANOVA مربوط به مشاهده مربوط

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مجموع معیارهای F-Value</th>
<th>P > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>رنج‌دهی</td>
<td>۱۱۴۱۲/۳</td>
<td>۸۷۹/۹</td>
</tr>
<tr>
<td>مدل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بالیناند</td>
<td>۵۴۸/۹</td>
<td>۲۵۸/۷</td>
</tr>
<tr>
<td>عدم تناسب</td>
<td>۴۹۶</td>
<td>۴۴/۹</td>
</tr>
<tr>
<td>COD</td>
<td>۵۰۷/۸</td>
<td>۴۳۱/۴</td>
</tr>
<tr>
<td>مدل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بالیناند</td>
<td>۱۰۱/۳</td>
<td></td>
</tr>
<tr>
<td>عدم تناسب</td>
<td>۱۷۵/۴</td>
<td>۶/۴۸</td>
</tr>
</tbody>
</table>

\[1 \text{ R}^2 = 0.82; R_{adj} = 0.78; \text{adequate precision} = \infty \]

\[2. \text{ R}^2 = 0.82; R_{adj} = 0.78; \text{adequate precision} = \infty \]
معدل به شکل مسئولیتی دقیقی در رابطه ای که می‌تواند محدودت را از فاضلاب به وسیله تشکیل کمیکس حسینی به باج کننده جریان‌های جدایگری مشابه. Fe(OH)₃ نسبت به Fe(OH)₃ با مول‌برایه 0.8 می‌باشد.

در مورد آبنده‌ها میزان Fe به روش COD در pH 6.5 همانند با مقدار Fe در pH 9.5 مشابه آب‌نده طراحی به وجود می‌آید. CO2 در محل کاتد شکل می‌گیرد. در آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃.

در حذف رنگ و آلاینده‌ها از آب به دلیل مقدار Fe(OH)₃ نسبت به Fe(OH)₃ آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃. CO2 به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃ آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃.

در حذف مواد آلی و رنگ برشمردها در طی فرآیند جدا می‌گردد، این در حالیست که

می‌تواند به توجه به نمودارهای سه بعدی که به طور عمده در اثر Fe(OH)₃ نسبت به Fe(OH)₃ آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃.

در حذف مواد آلی و رنگ برشمردها در طی فرآیند جدا می‌گردد، این در حالیست که

می‌تواند به توجه به نمودارهای سه بعدی که به طور عمده در اثر Fe(OH)₃ نسبت به Fe(OH)₃ آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃.

در حذف مواد آلی و رنگ برشمردها در طی فرآیند جدا می‌گردد، این در حالیست که

می‌تواند به توجه به Nمودارهای سه بعدی که به طور عمده در اثر Fe(OH)₃ نسبت به Fe(OH)₃ آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃.

در حذف مواد آلی و رنگ برشمردها در طی فرآیند جدا می‌گردد، این در حالیست که

می‌تواند به توجه به Nمودارهای سه بعدی که به طور عمده در اثر Fe(OH)₃ نسبت به Fe(OH)₃ آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃.

در حذف مواد آلی و رنگ برشمردها در طی فرآیند جدا می‌گردد، این در حالیست که

می‌تواند به توجه به Nمودارهای سه بعدی که به طور عمده در اثر Fe(OH)₃ نسبت به Fe(OH)₃ آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃.

در حذف مواد آلی و رنگ برشمردها در طی فرآیند جدا می‌گردد، این در حالیست که

می‌تواند به توجه به Nمودارهای سه بعدی که به طور عمده در اثر Fe(OH)₃ نسبت به Fe(OH)₃ آبیاری اکسیژن به طور معمول در اثر Fe(OH)₃ نسبت به Fe(OH)₃.
بپیغه سازی فرآیند انعقاد الکتریکی....

زاویه سه‌بعدی مقایسه اثرات متغیرهای کمی با استفاده از الکترود آهن

افراش دانسیته چریان باعث افزایش کارایی حذف رنگ و COD می‌گردد.

3 اثر زمان واکنش

زمان واکنش نیز کارایی تصفیه فرآیند انعقاد الکتریکی را تحت

تأثیر قرار می‌دهد. زمان الکترولیز، میزان تولید پوشهای به مقدار "

Fe" شدید جریان با میزان یون فارادی جهت تعیین رابطه شدت جریان با میزان پوشهای آهن

و آلومینیوم تولید شده از طریق سلول الکتروشیمیایی ارائه شده

که میزان تئوریکی برای کل آن طبق رابطه 6 عبارت است از:

\[m = \frac{i \cdot t \cdot M}{z \cdot F} \]

به وسیله فرانکیت انعقاد الکتریکی انجام گردید که نشان داد که

که به ترتیب تعداد الکترون‌های متقل شده در

واکنش درسطح الکترود، وزن مولکولی (g/mol) و ثابت

فارادی (C/mol) است (1). در تحقیقاتی که توسط

و همکاران (2006) بر روی رنگ‌داهنده

Acid Yellow و basic،orange II محلول‌های رنگی

23 به وسیله فرانکیت انعقاد الکتریکی انجام گردید که
استفاده از الکترود آلومینیوم با گذشت زمان و افزایش شدت جریان بهبود می‌یابد و بعد از حدود 48 min راندمان شروع به کاهش می‌کند که ممکن است به دلیل افزایش سرعت میزان تولید Al(OH)3 شناور شدن و به دنبال آن کاهش راندمان باشد (2).

شکل ۳. نمودارهای سه بعدی اثر متغیرهای کمی فرآیند با استفاده از الکترود آلومینیوم
D-optimal بهینه سازی فرآیند با استفاده از COD تناوب تجربی با استفاده از تابع تقیبی حذف رنگ و در معادلات (5) - (4) بهینه سازی گردد. در این تحقیق، در فرآیند بهینه سازی، متغیرهای مستقل شدت جریان، زمان واکنش، pH و اولیه فاضلاب در محصولات حذف رنگ و راندمانهای COD حذف رنگ و حداکثر در نظر گرفته شد. هدف، تخمین شدت جریان، زمان واکنش و pH بهینه جهت دستیابی به راندمانهای حذف رنگ و مواد آلی بر حسب COD به شرایط بهینه با منظور بدیکردن شرایط مطلوب و توازن بهینه مورد بررسی قرار گرفت. در جدول (6)، شرایط بهینه با 40 راه ارائه شد. بهترین راه حل در حف توسط pH بهترین راه حل در pH4.77/6 min شرایط بهینه با شدت جریان 0.87/V، زمان 2/45 min و با استفاده از الکترود آهک بدست آمد. در این شرایط بهینه راندمان رنگزدایی 3/67/4 و حذف COD6/77/4 به شریی سبب تعداد خاصی آزمایش تحت این شرایط بهینه جهت آزمون عملکرد نهایی حذف رنگ و COD انجام می شد و به ترتیب راندمانهای 7/67/4 و 7/67/4 از نظر آماری کاهش دیده شد. آزمایش مدل است. همچنین این نتایج نشان داد که رابطه توسیعی با پایین متغیرهای مستقل در معادلات (4) و (5) وجود دارد.
نتیجه‌گیری
تصفیه فاضلاب صنعتی کارخانه نساجی با استفاده از الکترودهای آهن و آلومینیوم در یک فرآیند انعقاد الکتریکی در راکتور بسته الکتروشیمیایی مورد مطالعه قرار گرفت. در این آزمایشات، بالاترین حذف در شرایط مورد مطالعه برای COD و رنگ به ترتیب 95/75% و 74/75% به دست آمد. نتایج تیتری برای COD میزان حذف رنگ و COD با استفاده از الکترودهای آهن و آلومینیوم با درجات رضایت بخشی از تناسب بدست آمد. با استفاده از این توابع، تئوری فاضلاب صنعتی نساجی با استفاده از فرآیند انعقاد الکتریکی با در نظر گرفت نهایت بولی هم بارامترها در محدوده مورد مطالعه و حداکثر راندمان جهت حذف رنگ و COD بهینه گردید. شرایط بهینه در شدت جریان 48 min و زمان حدود 248 حذف رنگ به ترتیب 74/75% و 73/72% بدست آمد. با عبارتی فاکتور آزمایش تجربی 74/75% و حذف COD به ترتیب 73/72% و pH=4 به ترتیب مشخص گردید. تحت این شرایط، راندمان حذف رنگ با ترتیب 95/75% و 74/75% به ترتیب 73/72% و 72/71% بدست آمد. نتایج تیتری آزمایش تجربی به ترتیب مطلوب برای الکترود 73/72% و حذف COD به ترتیب 74/73% و حذف Fe به ترتیب 1/73 به شرح این نتایج، فرآیند انعقاد الکتریکی می‌تواند یکی از بهترین گزینه‌های روش‌های فیزیکوشیمیایی برای تصفیه فاضلاب صنعتی شود به ترتیب تحقیقات بیشتر به شمار رود.

تشکر و قدردانی
تحقیق حاضر با حمایت مالی دانشکده علوم پزشکی دانشگاه تربیت مدرس انجام گرفته است.
منابع
20-Khosravi R, Moussavi G, Farzad kia M. Investigation...

The optimization of electrocoagulation process for treatment of the textile wastewater by Response surface Methodology (RSM)

Samaneh Ghodrati, Gholamreza Moussavi*

Department of Environmental Health, faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Received; 17 June 2013 Accepted; 14 September 2013

Abstract

Background and objectives: Electrocoagulation (EC) as an electrochemical method was developed to overcome the drawbacks of conventional decolorization technologies and is an attractive alternative for the treatment of textile dyes. This study was aimed at the optimization of the EC process for decolorization and COD removal of a real textile wastewater using response surface methodology (RSM). RSM is an important branch of experimental design and a critical technology in developing new processes, optimizing their performance, and improving design and formulation of a new products.

Materials and Methods: In this study, a bench scale EC reactor was designed, constructed, and studied for treatment of a textile wastewater. The main operational variables were current intensity, residence time, initial pH, and electrode materials as independent variables; color and COD removal were considered as dependent variables. The experimental runs were designed using selected variables using Design Expert 7.0 software and the process was optimized for decolorization and COD removal using the response surface method.

Results: The optimal operational conditions in the EC process for attaining the maximum decolorization and COD removal were current density of 0.97 A, initial pH of 4.04, residence time of 48 min, and Fe electrode. The desirability factor for Fe electrode was 1, while decolorization and COD removal were predicted 76.3 and 75.6% respectively, which was confirmed by the experimental results.

Conclusion: The experimental results indicated that the EC process is an efficient and promising process for the decolorization and COD removal of textile effluents. Under the optimized conditions, the experimental values had a good correlation with the predicted ones, indicating suitability of the model and the success of the RSM in optimizing the conditions of EC process in treating the textile wastewater with maximum removals of color and COD under selected conditions of independent variables.

Keywords: Electrocoagulation; textile wastewater; optimization; response surface methodology

*Corresponding Author: moussavi@modares.ac.ir
Tel: +9821 82883827