بررسی عوامل موثر در تولید هالواستیک اسیدها و اندازه‌گیری غلظت آنها در آب خروجی تصفیه خانه‌های شهر تهران در نیمه اول سال 1389

امیر حسین موحی، نوشی راستکاری، رامین نیا و زاده، شاهرخ نظم‌آرا، سیمون ناصری، موبه‌جوی فرجانی

چکیده

زمینه و هدف: معمول‌ترین روش کنترل‌پذیری آب کلری‌زدایی است، اما کلر با ترکیبات آب طبیعی که در طی فرآیند تصفیه به‌خوبی حذف نشده‌اند در بیشتر مطالعات صورت گرفته در ایران تری هالومتانها مورد بررسی قرار گرفته‌اند. با توجه به ترکیبات حاضر در اولین اولین بار در ایران مورد پاک‌سازی قرار گرفته تری هالومتانها بین ترکیبات حاضر برازندگی‌های خاصی را ایجاد می‌کنند.

روش پژوهشی: نمونه‌برداری در شهر تهران انجام شد، در نمونه‌های آب سطحی دبیتش در اواخر سال 1389 آب سطحی سطحی تصفیه‌شده و تصفیه‌شده شهر تهران انجام شد. در نمونه‌های آب سطحی pH، دما، جذب اشعه فرابنفش در 254 nm، کل کربن آهی و هالو استیک HAAs و موجود در آب تصفیه‌شده، کل کربن آهی و هالو استیک HAAs و موجود در آب تصفیه‌شده.

یافته‌ها: نتایج مطالعه در شهر تهران نشان داد که غلظت کربن آهی در آب سطحی به ترتیب در فصل بهار و تابستان 38/43 و 39/73 µg/L و غلظت HAAs (TOC) در فصل بهار بیشتر می‌باشد. با توجه به حداکثر مجاز مجاز فیت‌اکسوم پروظر (EPA) 60 µg/L در دیال نزدیک بودن مقدار EPA با نسبت استاندارد می‌توان به سطح استاندارد می‌توان به سطح استاندارد و همچنین میزان فرآورده‌های سطحی در فصل بهار بیشتر می‌باشد. میزان فرآورده‌های سطحی در فصل بهار بیشتر می‌باشد.

نتیجه‌گیری: نتایج مطالعه نشان داد که میزان هالو استیک اسیدها و تری هالومتانها در فصل بهار بیشتری نسبت به فصل تابستان است. با توجه به حداکثر مجاز (TOC) و NOM در فصل بهار بیشتر می‌باشد. با توجه به حداکثر مجاز فیت‌اکسوم پروظر (EPA) 60 µg/L، میزان فرآورده‌های سطحی در فصل بهار بیشتر می‌باشد.

واژگان کلیدی: هالو استیک اسیدها، کل کربن آهی، جذب اشعه فرابنفش در 254 nm، آب، فرآورده‌های سطحی.
پیچیده‌ای از ترکیبات آلی به کار می‌رود، DBPs

و در میانگین غلظت هالواستیک اسیدها در تصفیه و همکاران در (3) نشان می‌دهد که بیش‌ترین میزان این ترکیبات مربوط به ترکیبات آلی است. در میانگین غلظت هالواستیک اسیدها دومین فراورده مهم جانبی کلرزندی در آب هستند. این ترکیبات آلی، غير فرار با نقطه جوش 30-189 درجه سانتی‌گراد نفوذ می‌کنند. در تحقیق صورت گرفته توسط Lou و همکاران در سال 2010 در میانگین غلظت هالواستیک اسیدها در تصفیه خانه‌های شماره 2 و 3 شرکت می‌کردند.

Malliarou و TCAA (2002) نشان دادند که نسبت میزان ترکیبات مربوط به آلی به طبیعی 1/3 است.

MCAA, DBCAA و DBAAB در دو مرحله اصلی این فرآیند از دیگر فراورده‌های بستگی به طبیعت میزان ترکیبات آلی و کپسیل‌ها دارد. نسبت فراورده‌های دومین فراورده‌ها نسبت به فراورده‌های اصلی افزایش می‌یابد و این نتایج با نتایج دیگر مطابقت دارد. به همین دلیل، در تحقیق صورت گرفته توسط Lou و همکاران در سال 2010 در میانگین غلظت هالواستیک اسیدها در تصفیه خانه‌های شماره 2 و 3 شرکت می‌کردند.

Malliarou و TCAA (2002) نشان دادند که نسبت میزان ترکیبات مربوط به آلی به طبیعی 1/3 است.

MCAA, DBCAA و DBAAB در دو مرحله اصلی این فرآیند از دیگر فراورده‌های بستگی به طبیعت میزان ترکیبات آلی و کپسیل‌ها دارد. نسبت فراورده‌های دومین فراورده‌ها نسبت به فراورده‌های اصلی افزایش می‌یابد و این نتایج با نتایج دیگر مطابقت دارد. به همین دلیل، در تحقیق صورت گرفته توسط Lou و همکاران در سال 2010 در میانگین غلظت هالواستیک اسیدها در تصفیه خانه‌های شماره 2 و 3 شرکت می‌کردند.

Malliarou و TCAA (2002) نشان دادند که نسبت میزان ترکیبات مربوط به آلی به طبیعی 1/3 است.

MCAA, DBCAA و DBAAB در دو مرحله اصلی این فرآیند از دیگر فراورده‌های بستگی به طبیعت میزان ترکیبات آلی و کپسیل‌ها دارد. نسبت فراورده‌های دومین فراورده‌ها نسبت به فراورده‌های اصلی افزایش می‌یابد و این نتایج با نتایج دیگر مطابقت دارد. به همین دلیل، در تحقیق صورت گرفته توسط Lou و همکاران در سال 2010 در میانگین غلظت هالواستیک اسیدها در تصفیه خانه‌های شماره 2 و 3 شرکت می‌کردند.

Malliarou و TCAA (2002) نشان دادند که نسبت میزان ترکیبات مربوط به آلی به طبیعی 1/3 است.

MCAA, DBCAA و DBAAB در دو مرحله اصلی این فرآیند از دیگر فراورده‌های بستگی به طبیعت میزان ترکیبات آلی و کپسیل‌ها دارد. نسبت فراورده‌های دومین فراورده‌ها نسبت به فراورده‌های اصلی افزایش می‌یابد و این نتایج با نتایج دیگر مطابقت دارد. به همین دلیل، در تحقیق صورت گرفته توسط Lou و همکاران در سال 2010 در میانگین غلظت هالواستیک اسیدها در تصفیه خانه‌های شماره 2 و 3 شرکت می‌کردند.

Malliarou و TCAA (2002) نشان دادند که نسبت میزان ترکیبات مربوط به آلی به طبیعی 1/3 است.

MCAA, DBCAA و DBAAB در دو مرحله اصلی این فرآیند از دیگر فراورده‌های بستگی به طبیعت میزان ترکیبات آلی و کپسیل‌ها دارد. نسبت فراورده‌های دومین فراورده‌ها نسبت به فراورده‌های اصلی افزایش می‌یابد و این نتایج با نتایج دیگر مطابقت دارد. به همین دلیل، در تحقیق صورت گرفته توسط Lou و همکاران در سال 2010 در میانگین غلظت هالواستیک اسیدها در تصفیه خانه‌های شماره 2 و 3 شرکت می‌کردند.

Malliarou و TCAA (2002) نشان دادند که نسبت میزان ترکیبات مربوط به آلی به طبیعی 1/3 است.

MCAA, DBCAA و DBAAB در دو مرحله اصلی این فرآیند از دیگر فراورده‌های بستگی به طبیعت میزان ترکیبات آلی و کپسیل‌ها دارد. نسبت فراورده‌های دومین فراورده‌ها نسبت به فراورده‌های اصلی افزایش می‌یابد و این نتایج با نتایج دیگر مطابقت دارد. به همین دلیل، در تحقیق صورت گرفته توسط Lou و همکاران در سال 2010 در میانگین غلظت هالواستیک اسیدها در تصفیه خانه‌های شماره 2 و 3 شرکت می‌کردند.

Malliarou و TCAA (2002) نشان دادند که نسبت میزان ترکیبات مربوط به آلی به طبیعی 1/3 است.

MCAA, DBCAA و DBAAB در دو مرحله اصلی این فرآیند از دیگر فراورده‌های بستگی به طبیعت میزان ترکیبات آلی و کپسیل‌ها دارد. نسبت فراورده‌های دومین فراورده‌ها نسبت به فراورده‌های اصلی افزایش می‌یابد و این نتایج با نتایج دیگر مطابقت دارد. به همین دلیل، در تحقیق صورت گرفته توسط Lou و H
تركیبات در آب خروجی تصفیه خانه‌های شهر تهران بررسی شدند. از سطحی به صورت ماهانه و در ۲ فصل (بهار و تابستان) نمونه برداری گردید و در آن نمونه‌ها از نظر pH جداب اشعه فرابنفش و کل رنگ آمیخته آب آزمایش قرار گرفتند. اشعه فرابنفش در طول موج ۲۵۴ nm و اضافه از روش شماره ۹۵۱۰ کتاب استاندارد و توسط دستگاه اسکیچ راکتور مدل Lambda ۲۵۲۵ و کل رنگ آمیخته اسید متراکم‌شده بعد از اکسیداسیون بررسولت و توسط دستگاه مدل ۵۰۰۰ مورد بررسی شد. نتایج فرآیند نمونه‌برداری و تگذیراتی از نمونه‌های آب سطحی بر اساس توصیه‌های کتاب استاندارد و دو آزمایش آب و اضافه از روش بهبود گرفت (۱۰). به نظر می‌رسد که مقدار هالواستیک اسید از این آب خروجی تصفیه‌های خانه‌های شهر تهران آب و برق شدن (۱۱). نمونه‌های آب برای تعیین هالواستیک اسید در سطحی و برق‌شده شدن و دما، کل آزرایی، pH، PH，
کارایی ستون، خطا در حجم تزریق، متغیر بودن یا کامل نبودن فرانک استخراج تعیین مقدار همراه با خطای کنار، بنابراین از استاندارد داخلی استفاده می‌شود که این خطا را برطرف می‌کند. انتخاب استاندارد داخلی عواملی مانند استاندارد داخلي و نمونه مورد نظر وجود داشتی و چشتهای آن مانند ترکیب تحت تجزیه آن باشد. ترکیب 2-دی بروم پروپیونیک اسید به دلیل خواص و زمان بازداری مناسب به عنوان استاندارد داخلی (مقدار: 2-دی بروم پروپیونیک اسید) انتخاب گردید. برای رسیدن کالیبراسیون 6 غلظت (میکرو‌گرم‌های در گرم) از مجموع استاندارد هالواتراک (MCAA-DCAA-MBAA) استفاده شده‌است. مقدار هالواتراک در گرمی با غلظت 100 μg/L. مخلوط استاندارد داخلی با غلظت 30-200 μg/L 2-دی بروم پروپیونیک اسید در آب مقدار ساخته شد. سپس بعد از انجام مراحل استخراج به دست آمده GC-ECD استخراج شد. تمامی مراحل 3 مرتی بر این غلظت تکرار شد. بعد از انجام تزریقات متعدد به دست آمده GC-ECD با توجه به نتایج بدست آمده به بهترین برنامه دمایی و نحوه استخراج آنالیزها از

جدول 1: میانگین غلظت مواد آلی طبیعی در منابع سطحی تهران در فصل بهار 1381

<table>
<thead>
<tr>
<th>SUVA(L/mg.m)</th>
<th>TOC(mg/L)</th>
<th>pH</th>
<th>رصدخانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.32</td>
<td>3.98</td>
<td>7/5</td>
<td>کرج</td>
</tr>
<tr>
<td>4.18</td>
<td>4.47</td>
<td>7/43</td>
<td>جاجيرود</td>
</tr>
<tr>
<td>4.5</td>
<td>3.8</td>
<td>7/8</td>
<td>لار</td>
</tr>
</tbody>
</table>

وارژن، زنگ و گل، معمولاً در توده‌های آبیاری استفاده می‌شود.
یافته‌ها

جدول ۲: میانگین غلظت مواد آلی طبیعی در منابع سطحی تهران در فصل ناپیستان ۱۳۸۹

<table>
<thead>
<tr>
<th>SUVA (L/mg.m)</th>
<th>UV-254 (1/cm)</th>
<th>TOC (mg/L)</th>
<th>pH</th>
<th>رودخانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۸۹</td>
<td>۰/۱۲۶۷</td>
<td>۲/۷۱</td>
<td>۷/۴۶</td>
<td>کرج</td>
</tr>
<tr>
<td>۰/۸۴۳</td>
<td>۰/۱۲۲۲</td>
<td>۲/۷۶</td>
<td>۷/۴</td>
<td>جاجارود</td>
</tr>
<tr>
<td>۰/۴۲</td>
<td>۰/۹۴۳</td>
<td>۱/۸۸</td>
<td>۷/۴</td>
<td>لار</td>
</tr>
</tbody>
</table>

درجه وزمان انکوباسیون

درجه وزمان انکوباسیون (Incubation Temperature) در درجه وزمان انکوباسیون (Incubation Temperature)
در نیمه اول سال ۱۳۸۹، در تصفیه خانه ۳۲٪ از توزیع اجزای هیدروفوبیک و هیدروفیلیک نشان می‌دهد که بخش هیدروفیلیک بیشتر است. همچنین، در میزان TOC مشاهده می‌شود که در تصفیه‌های داخلی، افزایش pH در ماهه اول سال تأثیر گذار در کاهش pH می‌گردد.

جدول ۳: میانگین غلظت هالواسیک اسیدها در آب‌های تصفیه شده توسط تصفیه‌خانه‌های آب تهران در فصل بهار ۱۳۸۹

<table>
<thead>
<tr>
<th>TCAA (µg/L)</th>
<th>DCAA (µg/L)</th>
<th>HAAs (µg/L)</th>
<th>(mg/L (L/mg⋅m))</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱/۱۸</td>
<td>۳۷/۴۲</td>
<td>۴۹</td>
<td>۶/۸۸</td>
<td>۷/۹</td>
</tr>
<tr>
<td>۱۱/۲۳</td>
<td>۴۹</td>
<td>۵۰/۵۶</td>
<td>۰/۰۳</td>
<td>۷/۳</td>
</tr>
<tr>
<td>۱۰/۱۸</td>
<td>۴۷</td>
<td>۴۱/۷</td>
<td>۰/۰۸</td>
<td>۷/۹</td>
</tr>
</tbody>
</table>

میزان مواد آبی طبیعی نیز در فصل بهار بیشتر از فصل تابستان در سطحی مشاهده می‌شود. بخش ۳ رونده تغییرات TOC در آب سطحی در ماهه اول سال ۱۳۸۹ نشان می‌دهد.

جدول ۴: میانگین غلظت هالواسیک اسیدها در آب‌های تصفیه شده توسط تصفیه‌خانه‌های آب تهران در فصل تابستان ۱۳۸۹

<table>
<thead>
<tr>
<th>TCAA (µg/L)</th>
<th>DCAA (µg/L)</th>
<th>HAAs (µg/L)</th>
<th>(mg/L (L/mg⋅m))</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۱/۴۵</td>
<td>۳۲/۲۹</td>
<td>۴۷/۸۳</td>
<td>۱</td>
<td>۷/۴۶</td>
</tr>
<tr>
<td>۱۱/۷۵</td>
<td>۳۷/۳۰</td>
<td>۴۸/۲۴</td>
<td>۱</td>
<td>۷/۳۲</td>
</tr>
<tr>
<td>۱۰/۹۱</td>
<td>۳۱/۸۴</td>
<td>۴۲/۸۳</td>
<td>۰/۱۸</td>
<td>۷/۳۸</td>
</tr>
</tbody>
</table>

بحث

جدول ۱ و ۲ نتایج مربوط به تفاوت‌های دما و UV-TOC، pH، SUVA و TOC را در آب‌های سطحی تهران در فصل بهار و تابستان نشان می‌دهد. مقدار مواد آبی طبیعی توسط UV-TOC مشخص می‌گردد و همانطور که مشاهده شده است، بر حسب میلی‌گرم در لیتر در رودخانه کرج، جاجرود و لار در فصل بهار به ترتیب حدود ۳/۸۴ و ۲/۴۲ و در فصل تابستان در رودخانه‌های ذکر شده به ترتیب ۲/۷۸ و ۲/۷۳ مشاهده می‌گردد. میانگین اشعه فرابنفش در ۲۵۴ نانومتر بر حسب (1/ cm) در رودخانه کرج، جاجرود و لار در فصل بهار به ترتیب ۱/۷۲، ۱/۷۹ و ۱/۸۰ مشاهده گردیدند. در این مطالعه در محیط‌های پنج پیچ در بوره و حفره‌های آب‌های باران‌های پاییزی ۱۳۸۹ و ۱۳۸۹ فصل‌های آب‌های باران‌های پاییزی ۱۳۸۹ و ۱۳۸۹
محوره فوطنی و همکاران

شاخص‌ها و عدد‌های مربوط به شکاف‌های آب فیروزخانی تهران در اول سال ۱۳۸۹

(۱) گروه Kaothisung تایوان به ترتیب شماره ۲ و ۱۵ و ۳۰/۵ و ۳۰/۷ و ۳۰/۴ و ۳۰/۵ و ۳۰/۵ و ۳۰/۵ و ۳۰/۵ و ۳۰/۵ در صفر تا خرداد سال ۱۳۸۹ که مجموع میانگین غلظت مواد آسیا طبیعی در آب تغییر می‌کند. میانگین غلظت متوسط ۰.۳/۴ میکروگرم/L در این مدت بوده است که مبتلا به این آلاینده در این مدت بر اساس مطالعات گزارش شده است (۲۵).

(۲) گروه میانگین غلظت مواد آسیا طبیعی در آب تغییر می‌کند. میانگین غلظت متوسط ۰.۳/۴ میکروگرم/L در این مدت بوده است که مبتلا به این آلاینده در این مدت بر اساس مطالعات گزارش شده است (۲۵).
نتیجه گیری

میزان هالواستیک اسیدها در آب تصفیه شده شهر تهران از میزان استاندارد مورد عیان EPA (20 µg/L) کمتر ولی نزدیک به آنست که می‌تواند هشداری برای سلامتی منابع آب محروم گردد. همچنین میزان متوسط کرت تری کلرواستیک اسید پایینتر از مقدار رهنمودی سازمان بهداشت جهانی است.

در آب TCAA و DCAA حضور در این پژوهش به هم نیز نشان دهنده که بالاترین میزان پیش‌سازی فرآورده‌های گندزدایی در فصل بهار مشاهده می‌گردد. به طور کلی حضور کلرواستیک اسید مشاهده شده در تابستان به دلیل شرایط متوسط و فصل و تغییرات فصلی هالوآتیک اسیدها تغییرات فصلی فرآورده‌های گندزدایی با تغییر در مقدار مواد آلی طبیعی و ویژگی‌های منبع آب ارتباط دارد. دمای و مقدار pH همکاران در سال 2007 و 2008 در آب تصفیه شده شهر تهران از میزان استاندارد مورد عیان EPA (20 µg/L) کمتر ولی نزدیک به آنست که می‌تواند هشداری برای سازمان بهداشت جهانی است. لذا نتیجه‌گیری می‌گردد که تغییرات هالوآتیک اسیدها در فصل بهار کاهش می‌یابد.

با وجود این که پیش‌بینی می‌گردد که تشکیل بیشتر هالوآتیک اسیدها در دمای بالاتر (فصل تابستان) اتفاق می‌افتد ویژگی‌های مواد آلی و جذب اشعه UV-254 در فصل بهار و به عنوان تهدید به مسئولان صنعت آب محسوب می‌شود. همچنین میزان دی و تری کلرواستیک اسید در آب تصفیه شده شهر تهران از میزان استاندارد مورد عیان EPA (20 µg/L) کمتر ولی نزدیک به آنست که می‌تواند هشداری برای سازمان بهداشت جهانی است.

در تابستان به دلیل شرایط متوسط و فصل، تغییرات فصلی هالوآتیک اسیدها تغییرات فصلی فرآورده‌های گندزدایی با تغییر در مقدار مواد آلی طبیعی و ویژگی‌های منبع آب ارتباط دارد. دمای و مقدار pH همکاران در سال 2007 و 2008 در آب تصفیه شده شهر تهران از میزان استاندارد مورد عیان EPA (20 µg/L) کمتر ولی نزدیک به آنست که می‌تواند هشداری برای سازمان بهداشت جهانی است. لذا نتیجه‌گیری می‌گردد که تغییرات هالوآتیک اسیدها در فصل بهار کاهش می‌یابد.

با وجود این که پیش‌بینی می‌گردد که تشکیل بیشتر هالوآتیک اسیدها در دمای بالاتر (فصل تابستان) اتفاق می‌افتد ویژگی‌های مواد آلی و جذب اشعه UV-254 در فصل بهار و به عنوان تهدید به مسئولان صنعت آب محسوب می‌شود. همچنین میزان دی و تری کلرواستیک اسید در آب تصفیه شده شهر تهران از میزان استاندارد مورد عیان EPA (20 µg/L) کمتر ولی نزدیک به آنست که می‌تواند هشداری برای سازمان بهداشت جهانی است.
تشکر و قدردانی

این مقاله حاصل از طرح تحقیقاتی مصوب مرکز تحقیقات محیط زیست دانشگاه علوم پزشکی تهران در سال 88 با کد 88-04-46-9923 با عنوان "بررسی غلظت هالوستیک اسیدها در آب آشامیدنی شهر تهران" است که با حمایت این مرکز اجرا شده است.
منابع


19. Toth G, Kelty K, George E, Read E, Smith M. Adverse male reproductive effects following subchronic exposure of rats to sodium...


Survey of the effective factors in the production of HAAs and measuring their concentration in the Tehran outlet water treatment plants in the first half of 2010

Amir Hossein Mahvi1,2, Noushin Rastkari1, Ramin Nabizadeh Nodehi1, Shahrokh Nazmara1, Simin Nasseri4, Mahboobeh Ghoochani*5

1Department of Environmental Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
2Centers for Solid Waste Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
3Centers for Air Pollution Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
4Centers for Water Quality Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
5Ministry of Health and Education, Tehran, Iran.

Background and Objectives: Chlorination is the most common method of water disinfection. Chlorine reaction with natural organic compounds nor removed completely during treatment process would result in forming disinfection byproducts. Followed by trihalomethanes, Haloaceticacides are the second main byproducts of chlorination in water. The research works conducted in Iran have assessed trihalomethanes. Hence, this is the first time we are reporting haloacetic acids in Iran.

Materials and Methodology: We collected samples from surface water resources and treated water in Tehran for six consecutive months (first half, 2010). We measured temperature, pH, UV adsorption at 254 nm and TOC in each surface water sample and analyzed pH, residual chlorine, and haloacetic acids in the treated water samples.

Results: We found that TOC in surface water resources is 3.6-4.42 and 1.78-2.71 mg/l in spring and summer respectively. Moreover, haloacetic acids concentration was found to be 41.7-55.56 and 34.83-43.73 μg/l in spring and summer respectively.

Conclusion: Our results revealed that concentration of NOM, TOC, and HAAs was more in spring than summer. In addition, concentration of HAAs was depended up on NOM and TOC. Considering maximum permeable concentration of HAAs (60 μg/l) by EPA, it can be claimed that concentration of HAAs was less than the maximum permissible level in all of the samples. However, the immaturity of the monitored values to the standard values can be a warning for concerned authorities in water industry.

Keywords: trihalomethanes, TOC, UV adsorption at 254 nm, water resources, disinfection byproducts

*Corresponding Author: mgh939@gmail.com
Tel: +98 9398283601