تدریج و پیشنهاد استاندارد و چارت اندازه گیری و کنترل تراز نشر صوتی

متوئررسیکلت ها

پروین نصیری، محمد رضا منظمی، کمال اعظم، سید نورالدین حسینی گوشه، سیه فرهنگ

نویسندگان: نصیری، نورالدین حسینی گوشه، کمال اعظم، منظمی

دریافت: 90/10/23

چکیده

زمینه و هدف: صداي ناشي از عبور و مرور متوئررسیکلت ها در پلابي در آئودي صوتی و شهرواي یک تراز نشر صوتی متوئررسیکلت هاي تراز داخلي نيز وارداتي بيشكر. اين مطالعه از طریق ارزیابی آئودي صوتی متوئررسیکلت ها اقطام براي حدود مجاز با تآثیر كاربرد در مراحل مختلف عمر متوئررسیکلت نموهده است.

روش پژوهشي: ابتدا استانداردهای صداي متوئررسیکلت در كشور هاي مختلف بررسی و با نتایج حاصل از اندازه گیري تراز صداي 424 دستگاه متوئررسیکلت در سه كشور مختلف مقایسه كرديم. ميان نمونه ها در هر كشور تائيي از ميان توليد ساليان آن كشور در كشور بويد. سپس با استفاده از آزمون هاي آماري حدودي را كه تابع در مراحل اول 90 درصد متوئررسیکلت هاي ساخت داخل را در پرگدير به عنوان استاندارد صداي متوئررسیکلت هاي توليد داخل پيشنهاد كرديم.

پایه ها: اين حد مجاز برای متوئررسیکلت های كروه 0.1، 0.2، 0.3 هب ترتيب 2، 48 و 64 کيلو هرتز مجزا (تاييد نور) محاسبه كرديم. براي مراحل COP (طاياب بر توليد) مطلق كرومول خاصي افزایش مي یابد و در نهایت نيز یک فلوچارت به عنوان روش استاندارد اندازه گيري صداي متوئررسیکلت ها در مراحل COP2TA پيشنهاد كرديم.

نتيجه كلي: تراز نشر صوتی متوئررسیکلت هاي ساخت داخلي به طور متوسط حدود 9 dB از حدود مجاز ارپاپي بيشكرمي باشد و اگر حدود مجاز ارپاپي را جهت متوئررسیکلت هاي ساخت داخل اعمال كنند حديد 90 درصد متوئررسیکلت ها از كرخه توليد خارج خواهد شد. كه در عمل اين امر غيرقابل اجرای خواهد بود.

از وارگان کلیدي: تراز نشر صوتی، متوئررسیکلت، استاندارد

1- دکتری بهداشت حرفه ای، استاد دانشکده بهداشت، دانشگاه علوم پزشکي تهران
2- دکتری بهداشت حرفه ای دانشگاه دانشکده بهداشت، دانشگاه علوم پزشکي تهران
3- دکتری اپیدمیولوژي، استاد دانشکده بهداشت، دانشگاه علوم پزشکي تهران
4- کارشناس ارشد بهداشت حرفه ای دانشکده بهداشت، دانشگاه علوم پزشکي تهران
5- دانشجوی دکتری بهداشت حرفه ای، دانشکده بهداشت، دانشگاه علوم پزشکي تهران
موتورسیستم‌ها یکی از منابع مهم تولید صدا در شهره‌ها به شمار می‌آیند که بهدلیل نبود قوانین و استانداردهای ملی در زمینه جد مجاز تر در شهره‌ها موجب آلودگی صوتی و مشکلات متعددی در می‌گردد. این باعث می‌گردد که در انتخاب محیط ساختمان‌های مسکن در شهره ها، نیاز به تدوین استانداردهای جهت صدا خروجی از موتورسیستم‌ها و ملزم کردن سازندگان این نوع وسیله تلقیه به رعایت این استانداردها در کشور احساس می‌شود.

هدف از این پژوهش مطالعه آلودگی صوتی ناشی از موتورسیستم‌ها به منظور پیش‌نهاد حذف مجاز صدا موتورسیستم‌که در کشور بوده است. به همین منظور با مطالعه استانداردهای صدا موتورسیستم در سایر کشورها و مقایسه آن با نتایج حاصل از آن‌ها گرایش صدا در ۶۲۳ دستگاه موتورسیستم تولید داخل و خارجی، مطالعه تایبی حاصل شده که در ادامه ذکر می‌گردد.

مواد و روش‌ها

این حاصل مختلف اندادگی‌های و همچنین استانداردهای ملی کشورهای دیگر در این خصوص مورد بررسی قرار گرفته‌اند. بر اساس اشاره نامی در طبق تعیین مجموعه EEC R41 این سال از مراجعی تایبی موتورسیستم‌که به نظاره تولید صدا پرداخته‌اند. این استانداردها صدا مصرف نیاز برای صدا ایجاد شده توسط موتورسیستم و در نهایت در صدا ایجاد نمایند.elsey از ۷۵ کیلو‌متر به سناریو طراحی یک پیش‌گیری که فاصله مداوم آزمایشات ۷۸/۱۰۱۵/ECC N یک حذف‌ریز در خصوص ترک صدا موتورسیستم و رادیویی را برای سیستم کاهش صدا ایجاد آگزور تایبی کننده و روش آزمون همگنی‌یا برای کشورها عضو ایجاد کرد است.

مطالعه‌ای در سال ۱۹۹۴ در آزمایشگاه‌ها تحقیقات حمل و نقل توسط TRL نقل انجام شده است. آنها انواع محیط‌ها شامل محیط‌های معنی‌دار، کارگاه‌های کاری و...

مقدمه

در دهه‌های اخیر با توجه به پیشرفت تکنولوژی و صنعت و نیز رویش و سوالات قانونی جدید در شهره‌ها، آلودگی صوتی در شهره‌های چندین برای شدید است، بکی از این سوالات که هم‌سرایی آلودگی صوتی شهره دارد موتورسیستم‌ها که پرداخته شده و در نتیجه سناها و انتخابات رای برای مورد.

فقدان استانداردهای مشخص کشوری در خصوص حد مجاز صدا خروجی از محیط تولید بالای آنها، ممکن آلودگی صوتی در شهره‌ها را تهدید می‌نماید. از طرفی در شهره‌های پزشک رانت دیگی از موتورسیستم به عنوان یک نشان طرح می‌باشد که تراز بالای نشر صوتی این وسیله تلقیه می‌تواند اثرات زیانی در این باشد. این اثرات زیانی در این باشد، ورودی‌های این اثرات اثرات فیزیولوژیکی صدا و همچنین هریتی ماستم و غیرمستقیم مرتبط با بیماری‌ها و مشکلات ناشی از آن، در دوره‌های اخیر تکرار تولید و به این اندازه که به این استانداردها را می‌توان به دو دسته اساسی تقسیم نمود:

۱- استانداردهای که حدود مجاز برای محیط‌های مختلف تعیین می‌شود. که تا حد امکان امکان‌پذیر فلاتر می‌باشد.

۲- استانداردهایی که برای تعیین تراز صوت تولیدی توسط منابع مختلف در محیط‌های شهره می‌باشد. استانداردهای تا حد زیادی استوانه به سطح پیشرفت برای کیفیت بوده و در حضور آنها در کنار استانداردهای محیطی نهایی مبنی به شکل تحریم قوانین نظارت بر صنایعی مختلف مرتبت و مواجهه با معنی تولید صدا شده است.
کارگاه‌های بزرگ اکوستیکی به منظور اندیشاد گیری و انجام آزمون‌های صوت و سانس موثرسیستمها هر مطالعه استیفاده داشته‌اند. ISO5130 و EEC78/1015/EEC و بسیاری از نمونه‌های بصورت گرفته.

صورت گرفته:
- میکروفون در فاصله 20/145 متری از میکروفون واقع در مسیر و در ارتقای 10/145 متری باای سطح زمین قرار گرفت.
- موثرسیستم بین خط BB' و AA' نمونه‌های میکروفون در تابع AA' گرفت.
- موثرسیستم بین خط AA' و BB' نمونه‌های صدا انجام می‌گرفت.

در این مطالعه کلیه موثرسیستم‌های ساخت داخل در سه گروه کلی شرح دیل طبقه بندی شدند (V حجم سیلدیر موثرسیستم می‌باشد):

<table>
<thead>
<tr>
<th>حجم سیلدیر (گروه موثرسیستم)</th>
<th>فراوانی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>جمع کل</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

مواد موثرسیستم‌های ساخت مطالعه مهمی نو فقط مسافت 1000 کیلومتر در جهت آب بیان دیده توسط خود شرکت‌ها پیموده بودند. لازم به ذکر است که جهت بررسی تأیید استاندارد الودکی هوای Euro 1 بر روی میزان صدا متغیر استاندارد الودکی از موثرسیستم‌ها یا موثرسیستم‌های که استاندارد الودکی هوای Euro 1 بودند و موثرسیستم‌های که استاندارد الودکی هوای Euro 1 را نداشتند. نسبت آنها در هر یک به شرح جدول 2 می‌باشد:

- محصول آزمون به عنوان موثرسیستم شد.
- صادقی صدا استاندارد مدل TES-1358 به بعد از آماده سازی و شرایط لازم طبق مقدار استاندارد به صورت زیر اقدام به انجام گیری صدا موثرسیستم شد.

جدول 1: توزیع فراوانی موثرسیستم‌های موثر مطالعه بر اساس حجم سیلدیر

- محقق آزمون در مکانی خارج از شهر تهران و سطحی که با استاندارد ISO10844 مطابقت داشته انتخاب گردید.
- هنگام انجام گیری موثرسیستم‌ها سرعت ثابت (مطالعه استاندارد ECE R41-03) به صورت (ECE R41-03) به خط AA' نشان داد.
- لحظه‌ای که اکنون موثرسیستم‌ها به خط AA' در لوله گاز موثرسیستم‌های به سرعت و تا آن‌ها حد ممکن پای می‌شود و تا زمانی که انتظار موثرسیستم‌ها از خط BB' رد می‌شود و آنگاه لوله گاز به سرعت و با حداکثر سرعت ممکن به حالت اول می‌گردد.

- از هر سمت موثرسیستم باید حداقل 2 اندام گیره صدا

Downloaded from ijhe.tums.ac.ir at 20:59 IRST on Friday November 8th 2019
به منظور یافتن حدود مجازی که بتواند درصد مشخصی از موتورسیکلت ها را در حیطه حدود قرار دهد تحلیل های آماری
نتایج با استفاده از نرم افزار Spss صورت گرفت.

جدول ۲: توزیع فراوانی موتورسیکلت های مورد مطالعه بر اساس نوع استاندارد آلوگدو هوا (EURO1)

<table>
<thead>
<tr>
<th>نوع استاندارد</th>
<th>فراوانی</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro1 دارای</td>
<td>477</td>
<td>75/89</td>
</tr>
<tr>
<td>Euro1 فاقد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>جمع کل</td>
<td>622</td>
<td>100</td>
</tr>
</tbody>
</table>

یافته ها
نتایج تحلیل آزمون های انجام گرفته بر روی ۶۲۲ عدد موتورسیکلت در سه گروه پاسخ جمعیت تعداد و همچنین نتایج حاصل از آزمون Spss در گروه ۳ و ۴ اورده شده است. به منظور پیشنهاد حداکثر حدود مجاز موتورسیکلت تناوب استاندارد گیری ها برای هر جامعه ۵ حالت قطعه شده است (X): متغیر حداکثر صد موتورسیکلت ها لامپ (۶۲۲) حداکثر

پتأم این موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

<table>
<thead>
<tr>
<th>پ‌(x ≤ L) از ۸۰ تا ۹۵</th>
<th>p(x ≤ L) از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>

پنجم: تایپ های صد موتورسیکلت ها لامپ (۶۲۲) حداکثر بصورت توزیع های آماری برای هر جامعه:

جدول ۳: نتایج کلی تحلیل صدای موتورسیکلت های مورد مطالعه

<table>
<thead>
<tr>
<th>از ۸۰ تا ۹۵</th>
<th>از ۹۰ تا ۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>Euro1 دارای</td>
<td>Euro1 فاقد</td>
</tr>
<tr>
<td>0 ۱۷۵ cc</td>
<td>175 cc</td>
</tr>
</tbody>
</table>
جدول 2: نتایج حاصل از تحلیل های آماری

<table>
<thead>
<tr>
<th>دارای1</th>
<th>Euro1</th>
<th>Euro1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V > 175cc</td>
<td>V ≤ 80cc</td>
<td>V > 175cc</td>
<td></td>
</tr>
<tr>
<td>تعداد</td>
<td>فاقد</td>
<td>تعداد</td>
<td>مبکشین</td>
</tr>
<tr>
<td>40</td>
<td>43</td>
<td>32</td>
<td>188</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

جدول 3: مقایسه استاندارد پیشنهادی ایران با دنیا در خصوص حذف مجز صدای موتورسیکلت جهت نایید نوع موتورسیکلت با توجه به صدای حاصل از آن

<table>
<thead>
<tr>
<th>اختلاف</th>
<th>استاندارد اروپا</th>
<th>گروه موتورسیکلت</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(x≤L)</td>
<td>هدف مجز پیشنهادی (TA)</td>
<td>وضوح موجود ایران (90)</td>
</tr>
<tr>
<td>9</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>77</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>8</td>
</tr>
</tbody>
</table>

Type Approval
و با ایجاد فرصت مناسب برای صنایع جهت اصلاح خط تولید خود این مقادیر را باید به برنامه‌های مدیریت جهاد مجاز تا حداقل ۶ ساله (جدول ۶) بر حسب نرخ اجرایی پیشنهاد شوند.

از لحاظ استقرار موتور سیکلت‌هایی که مجهز به ورود به دست آمده از (TA) را یا از فرصت‌هایی که روز مورد استفاده قرار گرفته و در صورت نبایستی مراکز صلاحیت دارد به صورت تصادفی اقدام به انتخاب نمونه جهت انجام آزمون انجام می‌گردد. این از متنی تکلیف باید در (COF) چهارم و روش‌های کاری که در شرایط اجرا می‌شود و صحت با چنین که ممکن است در حالی که این فرهنگ از وظایف‌های تولید به اصلاح نمایندگی و این مبادلات همان چیزی است که از جدول ۶ می‌توان فهمیده باشد. جهت ابزاری که میزان آن‌ها کمک می‌شود ناپاسخ‌های موجود در موتورسیکلت‌ها

جدول ۶: حداکثر حدود صدا و سیاست موتورسیکلت‌ها در مرحله COP

<table>
<thead>
<tr>
<th>سال</th>
<th>سال</th>
<th>V ≤ 80 cc</th>
<th>V ≤ 100 cc</th>
<th>V > 125 cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۸۹</td>
<td>۱۳۹۰</td>
<td>۷۴</td>
<td>۷۸</td>
<td>۸۱</td>
</tr>
<tr>
<td>۱۳۹۱</td>
<td>۱۳۹۲</td>
<td>۸۴</td>
<td>۸۷</td>
<td>۹۰</td>
</tr>
</tbody>
</table>

توضیحات:

- حداقل حداکثر مجاز COP در مرحله COP

جدول ۷: حداکثر حدود صدا موتورسیکلت‌ها در مرحله COP

<table>
<thead>
<tr>
<th>COP</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>V ≤ 80 cc</td>
<td></td>
</tr>
</tbody>
</table>

ملکی

در ادامه، وضعیت موجود صدا تولیدی موتورسیکلت‌های تولید کشور به همراه پیشنهاد حدود مجاز در غالب جدایی ارائه شده است. در جدول ۷ مقدار حدود مجاز پیشنهادی مربوط به حداکثر ۹۰٪ درصد موتورسیکلت‌ها را در می‌برد. از لحاظ به ذکر است اگر پیشنهاد استاندارد ایران‌را در این مرحله در درصد مورد در ایران نیز به اجرا در آموزی همان طور که از جدول ۴ نیز مشخص است در گروه ۱ کمتر از ۱۵ درصد، در گروه ۲ کمتر از ۱۲ درصد و در گروه ۳ کمتر از ۱۰ درصد

جدول ۴: پرینام زمان بندی جهت رسیدگی به استانداردهای بین المللی

<table>
<thead>
<tr>
<th>COP</th>
<th>۸۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>V > ۱۲۵ cc</td>
<td></td>
</tr>
</tbody>
</table>

Conformity of Production *
نتیجه گیری

از آنجا که فرآیند تدوین استاندارد ملی فرآیند بل های است، یکی از اولین گام های آن شناسایی و بررسی وضع موجود است، زیرا در غیر این صورت استفاده از استانداردهای تدوین شده سابر کشورها به دلیل تفاوت شرایط جغرافیایی - اقتصادی و فرهنگی - اجتماعی، سیاسی و ... قابلیت اجرا و اجرای کاربری در دیگر کشورها را نخواهد داشت و به علت عدم واقع بینی و ناهمواری با وضع موجود به مرحله عمل در نخواهد آمد. مطالعه این مطالعه پیش بینی می گردد استاندارد ارایا یک جدید ۵ بعنوان حجیم صحیح مюрور سیکلت که حجیم ۹ با استاندارد ایرانی کشورهای اروپایی اختلاف دارد طی یک برنامه زمانی بندی ۶ ساله در مدت زمانی معقول و با انتخاب مبناست پایتخت می باشد (جدول ۵). همچنین جهت اجرای هر چه بهتر اقدامات کنترلی و مراحل اخذ تاییدیه تولید و تطابق دادن این فرآیند با فلوجهی که در شکل ۲ اورده شده است.

در این مرحله اگر صدای اندازه گیری شده کمتر از حد مجاز ارایا شده در مرحله TA باشد یک نمونه به صورت تصادفی به انتخاب مراکز صلاحیت دار گرفته خواهد شد و مورد آزمایش صدا قرار می گیرد که اگر این مرحله نیز صداهای اندازه گیری شده کمتر از حد مجاز COP (جدول توصیه شده در جدول ۷) گردد مجوز تولید صادره خواهد شد.

۲- در مرحله تطابق محصول باIMPLEMENTATION (COP) در طی مراحل تولید پژوهشی هاپی از طرف مراکز صلاحیت دار انجام خواهد گرفت و همچنین لازم است در پاره های زمانی ۲ ساله به اندازه ۲۰۰/۰٪ خص تولید نمونه گیری به عمل آید و مورد آزمون صدا قرار گیرند. اگر این مرحله صدای اندازه گیری COP بیشتر باشد لازم است حد مجاز COP از خط تولید نمونه گرفته و مورد آزمایش صدا قرار گیرد. اگر در این مرحله نیز صدای اندازه گیری شده بیشتر از حد مجاز COP پایین باشد یا خط تولید اصلاح گردید و یا مجوز صادر COP شده باطل خواهد گردید.

شکل ۱ سیر آزمون صداهای مصرفسپکتک و حداکثر شرایط مورد نیاز برای سطح آزمون (محیط سایه گذاری شده) اخاه آزمون نامیده می شود
پیشنهاد می‌گردد. با توجه به اینکه مطالعات در زمینه آلودگی صدای ناشی از موتورسیکلت ها به ترتیب امر منطقه‌ای پیشنهاد حذف مجاز صدای موتورسیکلت ها در کشور در مقطع کارشناسی ارشد در سال ۱۳۸۸ می‌باشد که با حمایت دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران اجرا شده است.

 ضمن آنکه نویسنده‌که برخود لازم می‌داند که از مسئولین محترم کارخانجات موتورسیکلت سازی، کارشناسان سازمان حفاظت محیط زیست کشور (سربار خانم مهندس بیوه رز، جناب آقای مهندس مهد لویی، جناب آقای مهندس مظفری) و کلیه دوستانی که به توجه به این مطالعه همکاری داشته اند تقدیر و تشکر نمایند.

تشکر و قدردانی

این مقاله حاصل پایان‌نامه تحت عنوان مطالعه آلودگی صوتی ناشی از موتورسیکلت ها به منظور پیشنهاد حذف مجاز صدای موتورسیکلت‌ها در کشور در مقطع کارشناسی ارشد در سال ۱۳۸۸ می‌باشد که با حمایت دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران اجرا شده است.

 ضمن آنکه نویسنده‌که برخود لازم می‌داند که از مسئولین محترم کارخانجات موتورسیکلت سازی، کارشناسان سازمان حفاظت محیط زیست کشور (سربار خانم مهندس بیوه رز، جناب آقای مهندس مهد لویی، جناب آقای مهندس مظفری) و کلیه دوستانی که به توجه به این مطالعه همکاری داشته اند تقدیر و تشکر نمایند.

پیشنهاد می‌گردد. با توجه به اینکه مطالعات در زمینه آلودگی صدای ناشی از موتورسیکلت‌ها به ترتیب امر منطقه‌ای پیشنهاد حذف مجاز صدای موتورسیکلت‌ها در کشور در مقطع کارشناسی ارشد در سال ۱۳۸۸ می‌باشد که با حمایت دانشگاه علوم پزشکی و خدمات بهداشتی درمانی تهران اجرا شده است.

 ضمن آنکه نویسنده‌که برخود لازم می‌داند که از مسئولین محترم کارخانجات موتورسیکلت سازی، کارشناسان سازمان حفاظت محیط زیست کشور (سربار خانم مهندس بیوه رز، جناب آقای مهندس مهد لویی، جناب آقای مهندس مظفری) و کلیه دوستانی که به توجه به این مطالعه همکاری داشته اند تقدیر و تشکر نمایند.

10. Nunez DG. Cause and effects of noise pollution. Proceedings of Interdisciplinary Minor in Global Sustainability; 1998; University of California, USA.

Introducing the Standard and Chart to Measure and Control the Motorcycle Noise Level

*Nassiri P.1, Monazzam M.R.1, Hosseini Gousheh N.1, Azam K.2, Farhang Dehghan S.1
1Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Received; 18 July 2011 Accepted; 15 August 2011

ABSTRACT

Background and Objectives: Sound of motorcycles plays an important role in noise pollution in big cities. This is due to the lack of national law or standards to control the noise of domestic and also imported motorcycles.

This study tries to introduce a practical limit value in different stage of motorcycle life cycle by assessing their noise pollution.

Materials and Methods: First the motorcycles noise standards at different countries were studied and they were compared with the results from noise level of 622 motorcycles in 3 different groups. The sample volume in each group corresponds to the amount of their annual production rate. Then using statistical tests, a limit was determined in which 90% of the domestic motorcycles can be covered. The limit is proposed as the standard for domestic motorcycle noise.

Results: The limit for motorcycles of groups 1, 2 and 3 were 84, 86 and 87 dB (A), respectively in the TA stage. For the COP stage (Conformity of Production), the limit increases according to certain formula. In the end, a flowchart was proposed as a standard method for measuring the sound of motorcycles in the TA and COP stages was proposed.

Conclusion: Noise level of the domestic motorcycles is at least 9 dB (A) higher than the noise limit value of European motorcycle. If European limit value is considered for producing the national motorcycle, 90% of them will get out of production cycle and this would not be practical.

Keywords: Noise level, Motorcycle, Standard

* Corresponding Author: nassiri@sina.tums.ac.ir
Tel: +98 21 88992663 Fax: +98 21 88992663