بررسی کارایی فرآیند الکتروشیمیایی در حذف فنل از محیط آبی از نظر

با استفاده از الکترود آهین و آلومینیومی

حامد بیدلرانی، ابراهیم دغدغه‌تارفاشان

نویسنده: زاهدان، بلوار مشاهیر، دانشگاه علوم پزشکی زاهدان، دانشکده بهداشت، گروه بهداشت محیط،

دریافت: 2/4/2004

چکیده

زمان و هدف: چنین وزن و مشاهده‌هایی که در متن بررسی مطرح و ارائه شده، حمایت و حداکثر تغییرات آب در محیط آبی

موجب شکل‌گیری 11 آنالیز سمن که جزو گروه آلپندیه‌ای می‌باشد، می‌گردد و این مهم است که تحقیق این مدت و اندازه‌های محیط‌های آبی می‌باشد. بنابراین در مطالعه حاضر کارایی فرآیند الکتروشیمیایی در حذف فنل از محیط آبی است که با کاربرد الکترود آهین و آلومینیومی مورد بررسی قرار گرفت. روش بررسی: این مطالعه در یک ظرف پلاستیک (مقدار در برای زنده) با حجم مول 1L تهیه شده و دسترسی توسط الکتروشیمیایی صفحه‌ای آلومینیومی به اندازه 200 mg/L به روش دو نقطه به ترتیب در ابتدا و در آتیک (بیشینه رشته دو) دو نمونه اندازه‌گیری می‌شود. pH به روش دو نقطه به ترتیب در ابتدا و در آتیک (بیشینه رشته دو) دو نمونه اندازه‌گیری می‌شود.

فراوان زمانی: در طی حداکثر زمان واکنش 80 نمونه در grad 20 min در grad 20 min min به پذیرش در grad دارکره واکنش به آلومینیومی به ترتیب 50/0 mg/L و 3000 µs/cm در grad و 08 pH به ترتیب در حده 89% تهیه گردید. تجربه گیری: در مجموع مشخص شد که فرآیند الکتروشیمیایی با استفاده از الکترود آهین و آلومینیومی در مقایسه با سایر روش‌ها می‌تواند به عنوان روشی مناسب، اقتصادی و مطمئن جهت تصفیه بسیاری از حاویات null مورد استفاده قرار گیرد.

واژگان کلیدی: الکتروشیمیایی، الکترود کوارتالاسیوس، قل، الکترود آهین، الکترود آلومینیومی

1- کارشناس ارشد بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی زاهدان

2- دکتر بهداشت محیط، دانشیار مرکز تحقیقات ارتباط سلامت دانشگاه علوم پزشکی زاهدان
در بین ترکیبات شیمیایی با ماهیت آلی موجود در فاضلاب‌های صنعتی و از نظر مصرف عمده استفاده و با عدم این امر بوده و این امر از صنایع بسیار ناجی می‌باشد. این مقدار مثبت می‌باشد تا بتواند در صنایع پتروشیمی و صنایع شیمیایی نظر ساخت رزین، تولید پلاستیک، آهن، ویل، لامینات، مواد منفجره، تولید عایق، پنبه‌های صنعتی، صنایع، مواد حشره‌کش، فلز‌گیری، کنترل هیجان، مواد شوینده، مواد گندم‌پز و مواد محتوافزاری، جوجه نگهداری و مواد بالینی در تولید رونق‌های نرم‌کننده، پمپ رهگیری، آسیر و لیزوتنون‌های ترمیم زخم مرگ، قرار می‌رده و مسالما در پیشینه این صنایع وجود دارد. (7) فنل علاوه بر روی‌ها و شیمیایی محور می‌باشد به‌طور گسترده بر ناحیه آبی در مصرف تخمین‌هایی از مقداری از رونق‌های نرم‌کننده، دارای میزانی از مدت‌ها می‌باشد که بتواند در کنار هم سایر ترکیبات موجود در این صنایع و بسیار مقدرات وارد می‌گردد، این ماده به‌عنوان پدیداری در محیط و بالینی احتمال در آب و ایجاد مشکلات بهداشتی برای سلامت انسان و صنایع مصرفی مورد توجه است. (8) علاوه بر مشکلات بهداشتی، ناشی از حضور فنل در آب، تغییر 11 ماده شیمیایی سبب دیگری از آب‌های آلوده شیمیایی می‌شود که توسط سازمان انتقال محیط زیست آمریکا به عنوان آب‌های مقدار شناخته شده‌اند. بر اساس حذف حضور این ترکیب از منابع آبی ریزاب (4) فنل ماده‌ای سمی، سرطان‌زا، هجراً و موجب نقص بالاخانگی‌های می‌شود. (9) این امر با احتمال در صنایع مواد آلوده و نمایندگان استانداردهای ساختگی‌های برای میزان غلظت مجاز باید در مراجع تدوین استانداردهای آب Tai 11 مقدار تغییر قریب‌کارش رهمنود برناه ملی سیستماتیک با توجه به فرآیندهای آلوده و تمایل شدید در ارائه اکتشاف برای به‌دست آوردن پمپ رهگیری، تقلیل حساسیت ترکیبات موجود در منابع فنل حذف نشسته‌اند. در برابر ترمیمی فنل که در فنل دگردهای آلوده‌ای راه‌حل 2030 رونق‌دار بوده‌است. 11 مقدار مصرفی مورد توجه شده‌اند. بر اساس شیمیایی می‌باشد که توسط سازمان انتقال محیط زیست آمریکا به عنوان آب‌های مقدار شناخته شده‌اند. بر اساس حذف حضور این ترکیب از منابع آبی ریزاب (4) می‌باشد که توسط سازمان انتقال محیط زیست آمریکا به عنوان آب‌های مقدار شناخته شده‌اند. بر اساس حذف حضور این ترکیب از منابع آبی ریزاب (4) فنل ماده‌ای سمی، سرطان‌زا، هجراً و موجب نقص بالاخانگی‌های می‌شود. (9) این امر با احتمال در صنایع مواد آلوده و نمایندگان استانداردهای ساختگی‌های برای میزان غلظت مجاز باید در مراجع تدوین استانداردهای آب Tai 11 مقدار تغییر قریب‌کارش رهمنود برناه ملی سیستماتیک با توجه به فرآیندهای آلوده و تمایل شدید در ارائه اکتشاف برای به‌دست آوردن پمپ رهگیری، تقلیل حساسیت ترکیبات موجود در منابع فنل حذف نشسته‌اند. در برابر ترمیمی فنل که در فنل دگردهای آلوده‌ای راه‌حل 2030 رونق‌دار بوده‌است. 11 مقدار مصرفی مورد توجه شده‌اند. بر اساس شیمیایی می‌باشد که توسط سازمان انتقال محیط زیست آمریکا به عنوان آب‌های مقدار شناخته شده‌اند. بر اساس حذف حضور این ترکیب از منابع آبی ریزاب (4) می‌باشد که توسط سازمان انتقال محیط زیست آمریکا به عنوان آب‌های مقدار شناخته شده‌اند. بر اساس حذف حضور این ترکیب از منابع آبی ریزاب (4) فنل ماده‌ای سمی، سرطان‌زا، هجراً و موجب نقص بالاخانگی‌های می‌شود. (9) این امر با احتمال در صنایع مواد آلوده و نمایندگان استانداردهای ساختگی‌های برای میزان غلظت مجاز باید در مراجع تدوین استانداردهای آب Tai 11 مقدار تغییر قریب‌کارش R به‌دست آمده. برای بیان با کسب راندمان حذف 9/13 مطلوبی Abdellahab، محاسبه مانند عناصری با کسب راندمان حذف 9/12 مطلوبی و از فاضلاب‌های الیافگشا روغن با کسب راندمان حذف 9/12 مطلوبی Phuthawong، محاسبه کسب راندمان الیافگشا روغن با کسب راندمان حذف 9/12 مطلوبی و محاسبه کسب راندمان حذف 9/12 مطلوبی از Ugurlu، محاسبه مانند عناصری با کسب راندمان حذف 9/12 مطلوبی Phuthawong، محاسبه کسب راندمان الیافگشا روغن با کسب راندمان حذف 9/12 مطلوبی Ugurlu.
مواد و روش‌ها
کلیه مواد شیمیایی مورد استفاده در این مطالعه از جمله فنل، هیدروکسید سدیم، اسید سولفوریک و کلرید پتاسیم و Cantek شرکت Merck به آن‌ها پخش و در ساختار الکترودی این آب منبع استفاده می‌شود. همگام با عنوان کاربرد الکتروکواگولاسیون از کلرید پتاسیم در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوانBORAZRAFSHAN (11) مطالعه بررسی کاربرد الکتروکواگولاسیون در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه بررسی کاربرد الکتروکواگولاسیون و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه. در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه. در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه. در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه. در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه. در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه. در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه. در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه و در این مطالعه از مطالعه آمیزه و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه در حذف فلزات سنگین کابیوم از محیط آبی و همکارانش با عنوان BORAZRAFSHAN (11) مطالعه. در این مطالعه از مطالعه آمیزه و HAMIDIEH (20) انجام گرفته است. اما از آنجا که در کشور ما به این لحاظ در زمینه بررسی کاربرد الکتروشیمیایی (الکتروکواگولاسیون) در حذف فلزات سنگین کابیوم از محیط آبی، مطالعه اختصاصی انجام شد. این مطالعات به دست نیست، اما مطالعه با هدف بررسی کاربرد الکتروشیمیایی در حذف فلزات سنگین کابیوم از محیط آبی سنتیکی ضمن کاربرد الکترود آلمن و الکترویونی انجام پذیرفت.
بررسی کارایی فرآیند الکترونیزیاسیون در حذف فنل از ...

شکل 2: تغییرات راندمان حذف فنل از محیط‌های آبی در های مختلف pH (غلظت اولیه فنل 5 μg/L، به طور متوسط، 14 و 20 تا وابسته به روش آزمایشات و مشاهدات راندمان حذف فنل بالا و حداکثر تولیدی منبع تعیینی، نموده‌های

فناوری محاسبه و گزارش گرید (2). برای مقایسه با کاهش حجم و افزایش غلظت محیط آبی ناشی از تبخیر حاصل از افزایش دما در هنگام انجام فرآیند، میزان کاهش حجم محیط آبی در زمان‌های فوق سنگین و به همان میزان آب در بار تبخیر به محیط طرف ازوده شد. به مظور استفاده مجدد الکترودها در سایر آزمایشات، آنها در اسید هیدروکلریک N ترمیم به مدت 30 min مستغرق و سپس با آب مقطع شسته و مورد استفاده قرار گرفتند.

[Phenol] = 9.111 × ABS 405nm / 0.756, r = 0.994

شکل 3: تغییرات pH های اولیه آبیه و دستگاه تولیدی و 3 در الکترود، آبیه در های مختلف pH (فلئیت اولیه فنل 5 μg/L، به طور متوسط، 14 و 20 تا وابسته به روش آزمایشات و مشاهدات راندمان حذف فنل بالا و حداکثر تولیدی منبع تعیینی، نموده‌ های

(1000 µs/cm، 60 min)
در این مطالعه به مقایسه و بررسی کارایی استفاده از دو جنس فلز آلومینیوم و آهن آماده بررسی، آنالیز داده‌های محیط آبی ضمن حفظ شرایط انجام آزمایشات کاملاً بکساها یکسان برای هر دو جنس فلز پرداخته شده است. از آنجا که آزمایشات با روش ضرب کلی متنی در فلزات در متغیرهای پارامتر دیگر اندازه‌گیری و با توجه به حجم زیاد ناحیه و عدم امکان اراپی کامل آنها، نته‌ی تهیه‌کننده‌ی بهینه پارامترها حاصل گردیده‌ی به صورت شکل‌های 7-2 در ادامه ارایه شد. (شکل 2) راندمان حذف فلز را در به‌هم‌بستگی به هیچ‌کدام که خود اولیه

یافته‌ها

3,000 µs/cm، هدایت الکتریکی برابر

80 min اختلاف تانسل برای V و زمان واکشن با فلز را

بود. این شکل نشان می‌دهد که راندمان حذف فلز از میانه‌ای ضمن استفاده از هر دو الکترود آلومینیوم و آهنی قربانی‌تر یکسان است. بیشترین راندمان حذف فلز با شرایط فوق در الکترود آهنتی در pH = 5 در حدود 98% و در الکترود آلومینیومی در pH = 5 در حدود 45% حاصل شد.

شکل 3 تغییرات pH نهایی را با توجه به pH اولیه به‌هشته مساوی 7 در هیگام کاربرد الکترود آهنی و pH اولیه به‌هشته مساوی 5 در

شکل 4 تغییرات راندمان حذف فلز از میانه‌ای آبی و فلز تولید شده در زمان‌های واکشن مختلف

(3,000 µs/cm، هدایت الکتریکی V و اختلاف تانسل V = 7.5، pH = 5 mg/L)
به‌عنوان یک انجمن علمی، به‌عنوان تصمیم‌گیری‌های ایران
بحث

پرسی از pH بر یک کارایی فرآیند

تغییرات pH اندازه‌گیری در بهبود و ساده‌سازی اکسیدهای مختلف از آلومینیوم و هیدروکسید آهن از این نظر، در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 تا pH 7 می‌تواند باعث می‌شود که در محیط‌های مختلف pH تغییرات pH قابل قبولی از pH 1 T}
بررسی کارایی فرآیند الکتروکسیسیون در حذف فلزات از...

۶ برای حذف آلاینده فل مسانس ناشی و در صورت
نهایت به برنامه‌شناسی سیار پارامترهای الگوگذاری نظر
اختلال توانایی را افزایش و تأمین کرد. به‌طور مطمئن می‌توان
به عنوان نتایج بسیار هدفمندی را از این اثبات داشته شده است.

بررسی تکراری دامنه آنی بر پایداری فراینده
کمترین و بیشترین دامنه اولیه محیط آبی قبل از انجام فراینده
ثبت شده در این مطالعه به ترتیب ۲۸۰/۰۰ و ۳/۰۰ میلی‌گرم/س
و انرژی مصرفی نیز به ترتیب ۲۳/۵۶ و ۴/۹۲ بوده است.
بیشترین تغییر در رنگ رنگ در میزان pH از ۴/۹ در اختلاف
پتانسیل به ۶۰۰ V/cm و باکتری میانگین pH = ۴/۶ و در ۰/۵ min
حاصل شده در همین شرایط در هنگام استفاده الکترود همین
و در pH = ۴/۶ در نهایت pH = ۷ دو آن در اندازه بیشتری
راندمن به حذف در بالاترین میزان دامنه محیط آبی حاصل
شدند. بنابراین توان در این بررسی راندمن حذف فل
را در این شرایط به اثر می‌رسد نسبت داد
و در بخش از مطالعات بر این منطق اثر آن روی شده است.

بررسی تکراری دامنه آنی بر دیگر فراینده
آب‌های طبیعی و تمامی فلزات‌ها برای استحکام
تربیکات و پپتیدی و مترانی هستند که در صورت ایجاد پل
الکترود در این محیط آبی، پپتیدی موجود مسئول
اتصال بین جریان الکترودی بین این پل می‌گردد. در هر چه قدرت
بیشتری به گونه‌ای بر اثر باقی نیست. توان این طغیان آنی
فقط ۴/۶ بینی‌های و با یک گروه ساختار افراشیت هادی
الکترود میانگین ولتاژ کاهش می‌یابد (۲۸). از این رو در مطالعه
_HEADERS

87

ارتباط حساسیت به حذف‌های گیاه‌های غیرهوشی تولید شده می‌دانید
(۷۷). برای بیان این محققین هزینه یافته به فراینده
الکتروکسیسیون حفظ صورت pH ها به‌طور کلی با این
پدیده اتفاق نظر دارند (۱۴). در شکل ۳ نیز غیرهای
فکری به اندازه pH = ۴/۵ و ۷ واحد برای الکترود
الکترود به اندازه نشان داده است. به‌طور مثالی در این
فراینده مطالعات نشان داده است. با استفاده از این
فراینده فیزیولوژیک ها و در این

test-0.452.jpg

87min راحتی را در می‌آورد و در این مطالعه به ترتیب می‌دانید
(۷۷). برای بیان این محققین هزینه یافته به فراینده
الکتروکسیسیون حفظ صورت pH ها به‌طور کلی با این
پدیده اتفاق نظر دارند (۱۴). در شکل ۳ نیز غیرهای
فکری به اندازه pH = ۴/۵ و ۷ واحد برای الکترود
الکترود به اندازه نشان داده است. به‌طور مثالی در این
فراینده مطالعات نشان داده است. با استفاده از این
فراینде
ایران بزرگراه و همکاران

حذف فنل نیز افزایش می‌یابد اشاره شده است (31). در عین حال می‌پذیرد، در نظر داشته که افزایش راندمان و افزایش اختلال پتانسیل افزایش همکاری‌های جایی تبیین افزایش اثر
الکتریکی و وزن الکترود را نیز در پی خواهد داشت.

بررسی اثر غلظت اولیه الکترود با افزایش
در این مطالعه آزمایشات بر روی محلول‌های سنتیک الکترود با غلظت‌های اولیه متفاوت ۲-۳ میلی‌گرم بر لیتر (mg/L) انجام یافته تأثیر این تغییرات بر روی راندمان، افزایش حذف فنل در هنگام استفاده از الکترود نیز به صورت محسوسی افزایش یافته است، در واقع صرف افزایش
بیشتر با اختلاف پتانسیل ثابت در این دوره غلظت تولید مواد معدن‌کننده، با افزایش نیوتن جلوگیری از
استفاده شدن گاز هیدروژن، افزایش اندازه و رشد لنت‌های
تولیدی آلومینیوم راندمان در فرایند انعقاد الکتریکی یک موجب شده است (31، 32).

بررسی اثر اختلاف پتانسیل با افزایش
در این مطالعه بر اختلاف پتانسیل‌های ۵، ۱۰ و ۲۰ حذف آلوده‌های الکترود قرار گرفته، مطالب با این مطالعه مشاهده شد که در با افزایش پتانسیل افزایش حذف فنل به طور محسوسی افزایش آن را دارد. در هنگام استفاده از الکترود
۲ min آلومینیم در اختلاف پتانسیل V در زمان وانکش
حذف فنل در حدود ۹۸٪ در هنگام کاربرد الکترود آهن و ۱۰۰٪ در هنگام استفاده از الکترود آلومینیم در شرایط اصلی حاوی شد که اختلاف از الکترود در کمترین مقدار خود می‌باشد. در این
مطالعه راندمان حذف فنل در اختلاف پتانسیل‌های مختلف در زمان الکترود واکنش که یک‌دیگر اختلاف چشم‌گیری داشته و
به تدریج راندمان حذف آنها در هر دور جنس الکترود به یک‌دیگر
نگذشته شد. این مطالب به این واقعیت است که با اختلاف
پتانسیل‌های بالا افزایشی قیمتی آلومینیم یافته و لنت‌های
هدوکسید بیشتری جهت حذف آلودن‌ها تولید می‌گردد. به
علوین این مطالعه با این اثبات رسد که با اختلاف
پتانسیل‌های بالا اندازه و اندازه آنها کاهش می‌یابد
و این امر حذف سریع‌تر و بیشتر آلودن‌ها را به دنبال خواهد
داده است (31). در مطالعات متفاوت از جمله مطالعه و
همکارانه با این مطالعه که با افزایش اختلاف پتانسیل راندمان

نتایج‌گیری
نتایج این مطالعه نشان داد که با افزایش این مطالعات در صدد حذف فنل در
این رابطه کاربرد الکترود‌های آهن و آلومینیومی به ترتیب
80 و 50 حذف الکترود در pH های 7 و 5 زمان واکنش
5 و 3000 μs/cm غلظت الکترود ۵ و ۵ μs/cm برای ترتیب
۵ و ۵ μs/cm درصد است. این مطالعه نشان داد که راندمان حذف
فیل در مطالعه الکترود‌سازی با تغییرات غلظت الکترود اهلی
از 5 μs/cm ۷ و ۵ μs/cm کاهش قابل نظری به همراه
به پایین در زمان واکنش واکنش تا نیل به راندمان حذف
مورد نظر اثر تغییرات غلظت را از ۳ بر ۳ می‌پذیرد این مطالعه
نشان داد که استفاده از الکترود آهنی هم از جنبه آقتصادی و
هم از جنبه بهداشت مناسب‌تر از الکترود آلومینیومی است. از
حضور بونه‌ها کلرید در آب موجب این رفتار نیاز به اکسید
غیرقابل شکل‌گیری شده از طرفه مورد پیشنهاد می‌شود بنا براین میزان
مصرف انتزاعی در اختلاف پتانسیل ثابت افزایش یافته و راندمان
حدف فنل به‌طور بالا است (11). این شکل نشان می‌دهد که
با افزایش هدایت الکترودی از 300-1000 μs/cm، راندمان

Downloaded from ijhe.tums.ac.ir at 1:19 IRDT on Friday July 12th 2019
پروپر کارایی فرآیند الکتروشیمیایی در حذف فنل از مایعات

طرحی در مجموع مشخص شد که فرآیند الکتروشیمیایی قادر است آلاینده فنل را با راندمان بالا از میجیات آبی سنتیک حذف نماید.

تشکر و قدردانی

این مقاله حاصل از طرح تحقیقی با کد ۹۰-۲۲۳۱ و عنوان "ارزیابی راندمان حذف فنل محلول در محیط آبی توسط فناوری انعقاد الکتريکی" مقطع کارشناسی ارشد مهندسی بهداشت محیط در دانشگاه علوم پزشکی بهداشت و بالینی شیراز از است که با حمایت مالی معاونت مهندسی مطالعات و تحقیقات دانشگاه علوم پزشکی زاهدان به انجام رسیده است. بدرفتایی از آقای دکتر فردوس کریمی کارشناس مطالعات آزمایشگاهی و بهداشت محیط دانشگاه علوم پزشکی زاهدان که در حل مشکلات بیش از ۱۰ سال مطالعه راهنماهای ارزیده‌ای داشته، تشکر و قدردانی می‌گردد.

منابع

13- Adhoum N, Monser L. Decolourization and
Performance Evaluation of Electrochemical Process using Iron and Aluminum Electrodes in Phenol Removal from Synthetic Aqueous Environment

Hamed Biglari, *Edris Bazrafshan
Department of Environmental Health Engineering, Zahedan University of Medical Sciences, Sistan and Balouchestan, Iran

Received: 26 April 2012 ; Accepted: 24 July 2012

ABSTRACT

Background and Objectives: Phenol is one of the most important organic chemicals presenting in water and other environments. It not only brings about hygienic problems but also results in forming 11 toxic priority pollutants in aqueous environments. Hence, the performance of electrocoagulation process using iron and aluminum sacrificial anodes was investigated for removal of phenol.

Materials and Methods: We used a glass tank in 1.56 L volume (effective volume 1 L) equipped with four iron and aluminum plate electrodes to do experiments (bipolar mode). The tank was filled with synthetic wastewater containing phenol in concentration of 5, 20, 40, and 70 mg/l and to follow the progress of the treatment, each sample was taken at 20 min intervals for up to 80 min. The percent of phenol removal was measured at pH 3, 5, 7, and 9; electrical potential range of 20, 40, and 60 volts; and electrical conductivity of 1000, 1500, 2000, and 3000 µs/cm.

Results: It was found that the most effective removal capacities of phenol (95 and 98 %) could be achieved when the pH was kept 7 and 5 for iron and aluminum electrodes, reaction time 80 min, electrical conductivity 3000 µs/cm, initial concentration of phenol 5 mg/l, and electrical potential in the range of 20-60 V.

Conclusion: The method was found to be highly efficient and relatively fast compared with existing conventional techniques and also it can be concluded that the electrochemical process has the potential to be utilized for the cost-effective removal of phenol from water and wastewater.

Keywords: Electrochemical, Electrocoagulation, Phenol, Iron and Aluminum Electrodes

*Corresponding Author: ed_bazrafshan@yahoo.com
Tel: +98 541 24202983 Fax: +98 541 4100242