پایش شدت پرتودهی لامپ فرابنفش بدون رادیومتر

دکتر علیرضا مصداقی نیا، دکتر فرخ واعظی، عماددهفتان فرد، امیر حسین مهدوی، محمدرضا علی محمدی

دهگانیفارد@yahoo.com

نویسنده مسئول: تهران، دانشکده بهداشت دانشگاه علوم پزشکی تهران

دریافت: 27/2/87

پذیرش: 27/8/87

چکیده
زمینه و هدف: در عملیات گندزداشی به کمک لامپ فرابنفش با پایش نشانات تور لامپ می‌توان از تامین در مورد نیاز برای میکروب کنترل اطمینان بدست آورد. استفاده از مواد شیمیایی حساس به نور که بر میکروب روش اکتیوامتری می‌باشد، امکان بروز نیز به عنوان عملکرد لامپ را در شرایطی که رادیومترها اختصاصی پاسخ بی‌رو به اختیار ناشند، بوجود می‌آورد.

روش بررسی: مخلوط یاد شده 25 یا 26 وات این دارو به عنوان اکتیوامتر در لامپ فرابنفش شد. شدت نور لامپ کم فشار 17 وات این دارو به عنوان اکتیوامتر استفاده شد. پروتست برای این خاصیت برای پاتریاکس، UVC اندازه گیری کردند. تست پاتریاکس می‌تواند برای نشانه‌گیری تغییر کارایی اکتیوامتر انتظامی و سپس بهترین تغییر رنگ محلول برای مشخص کردن لامپ استفاده می‌شود.

نتایج: درصد باز کردن اکتیوامتر در لامپ پاتریاکس یک دقیقه که زمان معکول برای این عملي می‌گردد، تغییر رنگ مناسبی که بالاتر از استاندارداست، با احتمال بالایی در تاریکی مشاهده می‌گردد. نتایج نشان می‌دهد که درای دارو و باینک در تاریکی مشاهده می‌گردد.

واژگان کلیدی: لامپ فرابنفش، پاتریاکس، اکتیوامتر، بدودهی
پرتو فرابنفش امروزه جایگاه ویژه ای را در گردش دیگر آب، فاضلاب و هوا به داشته اتصال دهاد است. در روش‌های شیمیایی Chemical (معروف هستند اثر فوتون‌سنجی) نور برسی می‌گردد. در حقیقت این روش‌ها برای نمونه‌سنجی شدت بک در نظر نمی‌گیرند و این شیمیایی اجرا شده که مناسب با میزان در اشعه است. استوارت انتخاب شده، پنده یا دارای کیفیت بیشتری خواهد بود و از این نظر جدیدترین نتایج است. این امر خلاصه‌ای نشان می‌دهد که انتخاب شده امکان پیدا کردن (20).

لایه‌های فرابنفش Ultraviolet (UV) که معروف به نورهای جرم‌سیبا در عملیات مختلف گردش آبی‌ها بکار رفته می‌شوند. جدایا شدید نور در آب در صحنه‌ای از اصلی حذف 5 سانتی متری به بعد وقایع در شدت ناری اساس UV intensity (لیو) ملاحظه می‌شود. شدت ناری (I) انتخاب آن میکروالگی فعال نمی‌شود و به‌عنوان یک منشأ مورد نظر می‌باشد. منشأ این شدت در بررسی می‌باشد. این نمونه ناری از پیش به در نظر نمی‌گیرد. در مورد این ناری یا انتخاب گردش‌های حاضر در بررسی و روش در در سال‌های اخیر معرفی ترین مواد شیمیایی استفاده شده در با روش‌های مختلف یکسان بهترین متر مربع می‌باشد (30).

تاکنون تعدادی نام شیمیایی حساس نسبت به نور فرابنفش معرفی شده است. مهم‌ترین موادی که تاکنون برای انتخاب اکتیومتر مانند شکل این مراحل، فرآیندهای رادیاسیون نیاز به پیامدهای اکتیومتر استفاده در یک خطی به‌صورت به دست آمده و این نیاز به بیان دیگر از نتایج حاصل در نمونه توان در جهت باسی آموزی که از این نیاز به کمینه شده نور انتخاب می‌تواند روی UV intensity (I) مورد استفاده در سال‌های اخیر معرفی ترین مواد شیمیایی استفاده شده در پرتو فرابنفش (7) (5 و 6).
روش کار

مشخصات منع‌نور

لایم فرابنچ استفاده‌شده در این تحقیق کم‌کلی آن در شکل 1 قابل مشاهده می‌باشد از نمای کم‌فشار ۵۷ وات ساخت شرکت اوسرم (از انگلیسی اروپا) بوده است. جدول ۱ مشخصات دقیق منع‌نور لایم فرابنچ استفاده‌شده در این بررسی را نشان می‌دهد. لایم‌های کم‌فشار UV در دمای حدود ۸۰ درجه سانتی‌گراد عملیکرد را دارند ما با استفاده از این لایم فرابنچ مدل Osmar-HNS (۲۵ W.OFR) در دماهای کمتر نگر ملومسی نمی‌کند و به بیان دیگر کارایی‌اش شکل ۱: نمای کلی لایم فرابنچ استفاده‌شده.

جدول ۱: مشخصات لایم کم‌فشار فرابنچ

<table>
<thead>
<tr>
<th>عضو مفید</th>
<th>قطر</th>
<th>طول مفید</th>
<th>قدرت برناوره (W.254nm/UV)</th>
<th>جریان اسمی (A)</th>
<th>ولتاژ ورودی (W)</th>
<th>مدل لایم</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ساعت)</td>
<td>(mm)</td>
<td>(mm)</td>
<td>(W)</td>
<td>(A)</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>۸۰۰</td>
<td>۲۵۵</td>
<td>۳۵۱</td>
<td>۴۴۶</td>
<td>۰.۹</td>
<td>۲۵</td>
<td>Osram-HNS 25 W.OFR</td>
</tr>
</tbody>
</table>

* اگر اطلاعات از کمپانی اوسرم انگلیسی اروپا.
** شدت مشع تغییر فرابنچ (طول موج ۲۵۴ نانومتر) در فاصله یک متری از بالاب‌نور منع‌نور در مکان‌های کمپانی اوسرم در حدود ۱/۰۳ می‌باشد.

عده دقت قرر و همکاران

گندزدایی بایا بایا لایم بخش‌هایی متنوعه است که می‌تواند به منظور گندزدایی یک ماده مورد استفاده قرار گیرد. در مورد استفاده در عملیات مختلف گندزدایی، می‌تواند به منظور کاهش مقدار در زمان‌نامه‌گیری، روش فشار ضایعاتی (LPHO) با بار ضایعات نوری به کمک فشار ضایعاتی (LPHO) به منظور کاهش مقدار در زمان‌نامه‌گیری، روش فشار ضایعاتی (LPHO) با بار ضایعات نوری
پایین‌ترین لام فراخش... هم‌هی گروه با دارایی بالا (سانحه اکتیمونی مزار) و آب متغیر مورد استفاده در تهیه محلول های از نوع اوتاربوپ (دو بار تغییر نوع آب متغیر مجاز نمی‌باشد) از قبیل تغییرات مفید استفاده کرده‌ام. مفاوت صورت گرفته است به‌طور گیرشگر. علاوه بر این لازم است که محلول اکتیمونی تازه و در روز مصرف نهش شود. آزمایش‌های اکتیمونی انجام گرفته است. در این تحقیق در دمای 20°C 20% انجام گرفت است. از آنجایی که با افراد دومیزان <9& در دمای بیش از 12/1 درایه افزایش می‌یابد (حداقل 10 درجه سانتی‌گراد) جانوانی ناچار از پروتونسی در دمای غیر از 20°C باشیم باید تصمیم حرارتی ذکر شده پروتونسی یا رادیومتر در این بررسی، تعیین سریع شدت تور با پایگاهی دسته‌گاه EC EC Hanger رادیومتر مدل 1X ساخت کشور سوند انجام یافته‌ها در جدول 2 نتایج پروتونسی یا کمیسیون به‌کمک رادیومتر 25 1X EC Hanger قابل ملاحظه است. مشاهده می‌شود که با افزایش فاصله از مرکز لام فراخش، شدت پرتوی فراخش کاهش می‌یابد که نتایج آنالیز آماری (P-value) کمک به کننده این اختلاف معنادار است. (0.05 داشته باشد که مهمترین UVV 200 تا 2000 محلولی به‌طور ماهرهای است. در انجام گرفته است. تابی سطع هشدار از لامفیا هم فشار معنادار می‌شود. در این پروتونسی یا رادیومتر یا به توضیح است که لام اکتیمونی شده کاملاً نیاز به است (دارای کارکرد حدود 150 ساعت و چند بار خاموش و روش سازی) آزمایش‌های پروتونسی چه با روش رادیومتر و چه اکتیمونی باعث گرم شدن الیاف لام (گذشته حداقل 5 دقیقه زمان با ارائه لام است) انجام گرفته است. پروتونسی با محور این پایین‌ترین لام فراخش با پلیمر هی الیاف آزمایش‌های اولیه که پلیمر گرم و در شرایط فاصله 10، 25، 30، 40 و 60 ساعت می‌باشد اب راه پروتونسی محلول اکتیمونی سل کوارترزی مکعب مستطیلی با طول مناسب و نور یک صفحه متر می‌باشد است UVC چرا که طوری است که از ترکیب هر می‌تواند. آزمایش‌های اکتیمونی در یک مکعب
جدول ۴: مقادیر جدید نورد اتماتیک آب در محصولات مختلف پروتئین‌های کشت در فواصل مختلف از لامب UV

<table>
<thead>
<tr>
<th>فاصله از مرکز لامب (cm)</th>
<th>شدت فرابنفش (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/15</td>
<td>10</td>
</tr>
<tr>
<td>1/22</td>
<td>25</td>
</tr>
<tr>
<td>1/27</td>
<td>35</td>
</tr>
<tr>
<td>1/32</td>
<td>45</td>
</tr>
<tr>
<td>1/38</td>
<td>50</td>
</tr>
<tr>
<td>1/43</td>
<td>50</td>
</tr>
</tbody>
</table>

جدول ۵: مقادیر جدید نورد اتماتیک آب در محصولات مختلف پروتئین‌های کشت در فواصل مختلف از لامب UV

<table>
<thead>
<tr>
<th>فاصله از مرکز لامب (cm)</th>
<th>شدت فرابنفش (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/15</td>
<td>10</td>
</tr>
<tr>
<td>1/22</td>
<td>25</td>
</tr>
<tr>
<td>1/27</td>
<td>35</td>
</tr>
<tr>
<td>1/32</td>
<td>45</td>
</tr>
<tr>
<td>1/38</td>
<td>50</td>
</tr>
<tr>
<td>1/43</td>
<td>50</td>
</tr>
</tbody>
</table>

بحث

در روش اکتیویتیری با محصول پیدا، این بینانه می‌تواند نشان دهنده مؤثر لامب فرار می‌گردد. دوم اینکه تنها میزان کانترل زمانی که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت تر است و اگر تنها منتسب می‌شود. اینکه تنها میزان ربات کوانتیز که برای هر دقیقه سخت T
اکتینومتری به کمک محلول یدید - بیده بعد از 100 نانومتر حساسیت نیست و لذا اختصاصی‌یم نوانی دارد که شدت تابش نیاز می‌رود. شدت از لامپ‌های کم فشار بکار گرفته شود. شون نیز لامپ‌ها مونوکروماتیک هستند. امتاز‌های مهم دیگر برای این روش در برابر سایر روش‌های معروف شده جهت اکتینومتری دستیابی آسانتر به مواد شیمیایی اولیه در تهیه محلول‌های لازم برای پروپنژی می‌باشد.

با مستحکم‌کردن شدت تابش لامب می‌توان زمان تعریض ویا زمان تنظیم لامب را مشخص نمود. معمولاً جنین اندازه‌ی که شدت تابش یک لامب به کمتر از 70/ مقدار اولیه می‌رسد لامب تعریض می‌گردد.

منابع

UV-Lamp Intensity Determination Without Use of Radiometer

AR. Mesdaghinia, F. Vaezi, E. Dehghanifard, AH. Mahvi, M. Alimohammadi
Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Received 15 October 2008; Accepted 24 November 2008

ABSTRACT

Background and Objectives: Measurement of light intensity is a recommended practice for insuring the delivery of required germicidal dose in disinfection operations by UV lamps. Use of sensitive to light chemicals which is the base of actionometric methods could be considered as a suitable manner for estimating the intensity of UV lamp in circumstances that special radiometers are not available.

Materials and Methods: Iodide-iodate mixture was used as an actinometer for this study. The light intensities of a UV lamp (LP 25W) were first determined by a special UVC radiometer at certain distances from the lamp. Then the test of determining the suitable period of time for irradiation of actinometer was accomplished. Finally, the color changes of iodide – iodate solutions at the predetermined distances were evaluated at the wavelength of 352 nm. The latter analysis can be done by a common (visible) spectrophotometer.

Results: Results indicated that use of this actinometer is more suitable at the distances of 35 to 60 cm from the center of the lamp bulb since iodide-iodate solution has a detectable color change at this range of distance in one minute irradiation which may be considered as a reasonable time for actionometric operations.

Conclusion: Although all kinds of actinometers should not be regarded as precise as special radiometers and there would be need to use pure chemicals for actionmetric determination of light intensity, it can be claimed that the recommended procedure in this study which is the newest actinometric method can be used in acceptable evaluation of UV intensity with least difficulty in providing necessary instruments.

Keywords: UV lamp, radiometry, actinometry, Iodide-Iodate, disinfection practices