کیفیت میکروبی و شیمیایی آب مصرفی در صنایع غذایی
با محتوای پایین آب

دکتر محمد سافری، دکتر حسن نفتی پور، دکتر علی‌اصأد رحیمی، شاهرخ نظم آرا

نوبت‌ده تبریز، خ. عظیم نیشابوری، دانشگاه بهداشت و تغذیه، گروه بهداشت محيط ایران

دریافت: 8/10/1383
دریافت نهایی: 8/11/1389

چکیده
زمینه و هدف: در فرآیند تولید مواد غذایی بر مصرف تر، بی‌سکوپی، شکل‌گیری‌ها، ماکروتغییر و اماده سازی مواد اولیه، آب مورد استفاده قرار می‌گیرد. در تحقیق حاضر کیفیت میکروبی و شیمیایی آب‌هایی مصرفی صنایع بزرگ غذایی استان آذربایجان شرقی مورد بررسی قرار گرفت.

روش بررسی: تعداد 11 کارخانه با توجهات منفعت انتخاب گردید. نمونه‌های آب مصرفی طی فصل تابستان تهیه و از نظر وضعیت کنترل کیفیت آب، آلودگی میکروبی آب مصرفی و پارامترهای شیمیایی آب و فازات سنگین آنالیز شدند. علاوه بر آن صنایع انتخاب شده از نظر وضعیت کنترل کیفیت آب مصرفی نیز مورد بررسی قرار گرفت.

پایه‌ها: بر اساس نتایج حاصل در صنایع و تهیه کننده صنایع آب مصرفی از نظر میکروبی مشکوک به آلودگی بود. کیفیت شیمیایی آب مصرف شده از نظر عوامل بالینی بهتر بود. در کلیه آب‌های نمونه شده فازات نیکل، کروم، مس، روی، آهن و مکنتر مشاهده شد. اما مقدار اندازه‌گیری شدید در پایین تر از حدی‌کثر مجاز استاندارد ملی آب شرب بود. سپس در کارخانه‌های کاریز، ماکروتغییر و شکل‌گیری آب مصرفی سوزنی و کیفیت و کارکنان قرار گرفت. همچنین مشاهده شد که در کارخانه‌های صنایع 2 میلی‌گرم در کیلوگرم نیز در کارخانه‌های ماکروتغییر و 2 میلی‌گرم در کارخانه‌های صنایع 2 میلی‌گرم در کیلوگرم و نیز تا حدی در کارخانه‌های صنایع 2 میلی‌گرم در کیل...
مقدمه

امروزه یکی از دغدغه‌های اصلی صنایع غذایی دنیا اطمینان از کیفیت محصولات نهایی به منظور حفظ سلامت مصرفندگان است. به منظور حفظ این هدف سیستم‌های مدیریت مختلفی برای این صنایع طراحی و پیاده‌شده‌اند که (Hazard Analysis Critical Control Points) HACCP ISO 22000 و HACCP مجموعه‌ی از مروارید به سیستم مدیریت بهداشت مواد غذایی است که به منظور تجزیه و تحلیل خطرات و نقاط کنترل بررسی می‌باشد. از جمله اهداف این استاندارد امداد اطمنایی

در مصرف کنندگان محصولات، حرکت به سمت تولید بدون نقض و پیشگیری از مخاطرات شیمیایی، میکرو و فیزیکی است که ممکن است در فرآورده‌های غذایی چهار خصائص رساندن به حس‌های کالش و اعتماد زانیار شود. اطمینان از کیفیت آب مصرفی در فرآوری محصولات غذایی به عنوان بخش مهمی از استاندارد مورد نظر خواهد بود. استاندارد ISO 22000 اینجا غذا وابسته به بررسی مخاطرات بیماری‌زای

مواد و روش‌ها

تحقیق حاضر از نوع مطالعات توصیفی مقطعی است که در طی سال‌های 1385-1386 به انجام رسید. با توجه به استقرار صنایع غذایی‌گوناگون در استان آذربایجان شرقی این صنایع به عنوان جامعه مورد مطالعه انتخاب گردید. در این استان 377 واحد صنعتی غذایی دارویی و بهداشتی وجود دارد که بر اساس تعداد کارگاه به صورت زیر تقسیم بندی می‌شوند.

<table>
<thead>
<tr>
<th>ردیف</th>
<th>تعداد کارگاه (نفر)</th>
<th>فراوانی</th>
<th>درصد از کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2/5</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1/5</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5/2</td>
<td>1/5</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1/2</td>
<td>1/5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1/5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1/5</td>
<td>2</td>
</tr>
</tbody>
</table>

با بهره‌گیری از تقسیم بندی ایشان به سمت مرکز آمار ایران (9) و ادراک کل صنایع استان آذربایجان شرقی (7) بر اساس تعداد کارگاه به عنوان میزان اصلی (با اندازه‌گیری تعداد کارگاه) اهمیت صنعت نیز افزایش می‌یابد که به نتیجه‌انجام قطعات تولید نیز افزایش یافته و در نتیجه افزایش فاکتور مورد نظر مصرف می‌توانند که در صورت آزادی محصول نهایی تعداد بیشتری با خطر واحده خواهند داشت(2). همچنین فاکتورات صنایع غذایی و به پیش‌کاغذ مصرف‌گذاران محل استقرار صنایع در سطح استان، تعداد 11 صنعت غذا ای با مصرف‌گذاران آب به

کیفیت میکرو و شیمیایی این...
احتمال و مورد بررسی فرار گرفت. لازم به ذکر است که همگام با این تحقیق 6 یافته سازمان حکم‌نامه‌ای برای این بررسی گردید که قابل توجهی در محدودات تهیه دادن نیز بررسی گردید که نتایج مربوطی در مقایسه دیگر ۵ بررسی انتخابی را ارایه نمود. در مقایسه حاضر به منظور بررسی تهیه‌ای این صنایع از نظر انتشار اطلاعات خصوصی از این مستند آماده اجتذاب شده است. فهرست منابع مربوط به نظر زیر می‌باشد:
1. صنایع غذایی شماره 1 تولیدکننده بی‌سکوئیت کیک، شکلات، ویفر، آب نات، ادامه (بالایی ۵۰ نفر)
2. صنایع غذایی شماره 2 تولیدکننده غلات حجم شده (یکفک)
3. صنایع غذایی شماره 3 تولیدکننده بی‌سکوئیت ویفر، بن، بین
4. کارخانه تولید ماکارونی شمشاره (1) ۱۰۰ نفر
5. کارخانه تولید ماکارونی شمشاره (1) ۲۰۰ نفر
6. کارخانه تولید همبرگر (1) ۵۰ نفر
7. کارخانه تولید سوسیس و کالباس (1) ۵۰ نفر
8. کارخانه تولید تافی (1) ۵۰ نفر
9. کارخانه تولید شکلات (1) ۵۰ نفر
10. کارخانه آب‌سازی (1) ۵۰ نفر

اطلاعات از آزمایشگاه‌ها از نظر تهیه دادن نیز بررسی گردید که در آزمایشگاه‌ها کمکی به کارخانه‌ها و پیشنهاد‌ها است. این تحقیق صورت گرفته بر روی آب‌های مصرفی در صنایع بررسی شده سختی گیری از طریق حذف بیولوژیکی و مجزای (بادل بودن) برای آموزش در دیگر نهایت است. در۱۱ و ۱۷ بررسی شده به (۶۳٪) دارای هیچگونه پایه و کنترل در صنایع کیفیت آب نام‌پایش (جدول ۱). در۴ و ۱۷ باقیمانده نیز از این اعداد که بین رضایت از کیفیت مصرفی فشار می‌گیرد. این آزمایش‌های شیمیایی صرفه و خطر کنترل کیفیت آب مصرفی در دیگر های بیمار در این استفاده شده که نمونه‌های آب به
پایش کیفیت میکروبی نیز در صنایع غذایی شماره 1 باکتری‌های کلیفرم به‌صورت مفهومی با استفاده روش‌های اندازه‌گیری می‌شود. سطح‌های آگاهی موجود در زمینه کیفیت آب و آلودگی‌های مربوط به آن در بررسی‌های صنعتی شده در صنایع پایین است. به طوری که در ۲۳/۳ موارد هیچ گونه آگاهی در ارتباط با موضوع وجود نداشتند، در ۲۴/۷ موارد سطح‌های آگاهی ضعیف بوده و در ماهی (۱۸/۱) سطح آگاهی در حد متوسط می‌باشد (جدول ۱).

در خصوص توصیه بریانه پاش آب در ۸۱/۹ صنایع بررسی شده هیچ بریانه‌ای وجود نداشت. در ۵ واحد صنعتی، فرد موجود بایت کنترل کیفیت آب غلب با یک گزارش صنعت غذایی بوده و در ارتباط با آب صریفی در صنعت تخصصی نداشت. وظیفه اصلی وی در ارتباط با کنترل کیفیت مواد غذایی تولید شده است. در ۴ واحد صنعتی هیچ روشی در ارتباط با کنترل کیفیت آب وجود نداشته‌است (جدول ۱).

از نظر کیفیت میکروبی در کلیه نمونه‌های آب برسی شده باکتری‌های هپاتیت بی‌فیتیک مشاهده گردیده. براساس جدول ۲ از ۱۱ واحد صنعتی بررسی شده ۵ واحد (۴۵/۷) از نظر میکروبی پای کوده و ۴ واحد (۲۵/۷) مشکوک به آلودگی قرار گرفتند. مواد مشکوک نمونه‌های آب است که در آزمایش (احتیال و تاییدی) کلیفرم مشاهده شده و در نمونه آب باکتری‌های

![Diagram](https://via.placeholder.com/150)

شکل ۱: نمودار کلی تولید کیف. بیسکوئیت و ویفر و نطفه مصرف آب
جدول 1: اطلاعات مربوط به پایش کیفیت شیمیایی و میکروژی آب مصرفی در صنایع غذایی مطالعه شده

جدول 2: خلاصه نتایج آزمایش کیفیت میکروژی نمونه‌های آب صنایع غذایی بررسی شده

جدول 3: نتایج آنالیز نتایج سنجش نمونه آب صنایع غذایی مطالعه شده (مقادیر بر حسب mg/L)

محمدرضا و همکاران

* اماس پایه‌های داده شده به سوالات در ارتباط با آزمایش آب، همیشه آن همچنین روش‌های برداری و انواع آزمایشات شیمیایی و میکروژی

** با وظیفه اصلی کنترل کیفیت مصرف غذایی

"CFU/ml" هر 100 میلی‌لیتر نمونه می‌گوید.

"CFU/100ml" هر 100 میلی‌لیتر نمونه می‌گوید.

"CFU/1mL" هر میلی‌لیتر نمونه می‌گوید.

"CFU/10cm" هر 10 سانتی‌متر نمونه می‌گوید.

"CFU/100cm" هر 100 سانتی‌متر نمونه می‌گوید.

"CFU/1m2" هر متر مربع نمونه می‌گوید.

"CFU/10m2" هر 10 متر مربع نمونه می‌گوید.

"CFU/100m2" هر 100 متر مربع نمونه می‌گوید.

"CFU/1cm2" هر سانتی‌متر مربع نمونه می‌گوید.

"CFU/1m3" هر متر مکعب نمونه می‌گوید.

"CFU/10m3" هر 10 متر مکعب نمونه می‌گوید.

"CFU/100m3" هر 100 متر مکعب نمونه می‌گوید.
بحث

استفاده از آب به عنوان یک گیاه مورد توجه بسیاری از محققان قرار گرفته است. در این مقاله، به بررسی نقش آب در محصولات نهایی مکانیکی و شیمیایی اشاره می‌شود. در این مقاله، بررسی‌های آماری به‌خصوص به‌منظور محاسبه مقادیر کیفیت آب، انجام گردید. در این مطالعه، نشان داده شد که در ظرف محدودیت‌های صورت گرفته، میزان کیفیت و کیفیت فاصله تولید شده و کیفیت آب مصرف فراوری در صنایع غذایی بیشتر از کیفیت موجود در فرآوری محصولات نهایی مورد توجه بوده است. (14–11).

از جمله سیاست‌های حمایت از آب به عنوان یک گیاه، می‌توان به تخفیف و توزیع آب، کاهش مصرف آب در صنایع غذایی، تولید و جداسازی استرکنیک، سیستم‌های فراوری آب در صنایع غذایی، کاهش مصرف آب و بهره‌برداری از سیستم‌های فراوری آب، اشاره کرد.

نتیجه گیری

در تحلیل مواد غذایی بخصوص نظر کیفی، پیش‌کویی، شکل‌گیری، مکانیسمی در راستای ابعاد‌های مواد غذایی، کاهش میزان حبیطه، کارکردهای خود و خدمات صنعتی و همچنین کنترل کیفیت آب لازم است به کنترل کیفیت آب مصرف برای بررسی و فوریت تولید توجه لازم صورت گیرد. اقدامات مربوطه می‌تواند شامل کلیک‌سنجی روزانه آب مصرفی و تغییر حضور باکتری‌های کلیفلجر، بررسی وضعیت مصرف آب و پیش‌بینی تغییرات حضوری بالا در کارکردهای اختلالی آب و موجود ناشی از افزایش آلودگی به آب را به عنوان یک گیاه مورد توجه قرار گرفته است. همچنین سطح آلایی های موجود در زمینه کنترل کیفیت آب و آلودگی‌های مربوط به آن بسیار ضعیف بود. این سیستم مدل‌سازی کردن هر گونه از آلودگی به آب را می‌تواند به عنوان یک فناوری معرفی شود. در این مقاله، اشاره به عدم توجه به پایین کیفیت آب باشد. به‌یعنی، منابع شیرینی، بیش‌تر سه‌اهی و محصولات به‌ویژه مقادیر نهایی می‌تواند بیشتر از محصولات دیگر باشد. بنابراین، در محصولات دیگر، باید توجه به اینکه آب به‌عنوان یک گیاه حیاتی مورد توجه قرار گیرد.
تشکر و قدردانی

تحقیق حاضر با استفاده از مسایل مایل مرکز تحقیقات علوم غذا و توسعه در استان آذربایجان شرقی (برنامه امینی غذا و تغذیه) به انجام رسیده که نوسانات مقاله به دینوژئیه تشکر و قدردانی خود را از این مرکز به ویژه از جنب آقای دکتر سلطانعلی محیوب و آقای موسی غیور اعلام می دارید.

منابع

5. Mosaferi M, Siyahi M, Hajizadeh Y. Importance of chemical quality aspects of water in food industries: Case study of drinking, dairy and canny industries of East Azerbaijan Province. Proceeding of 9th Iranian Nutrition Congress; 2006; Tabriz, Iran.
Microbiological and Chemical Quality of Water in Food Industries with Low Content of Water

*Mosaferi M.1, Taghipour H.2, Ostadrahimi A.3, Nazmara Sh.4

1 Department of Environmental Health Engineering, Faculty of Health and Nutrition, Tabriz University (Medical sciences), Nutrition Research Center and Research member of National Public Health Management Center (NPMC)
2 Department of Environmental Health Engineering Department, Faculty of Health and Nutrition, Tabriz University (Medical sciences)
3 Department of Nutrition Department, Faculty of Health and Nutrition, Tabriz University (Medical sciences), Nutrition Research Center
4 Department of Environmental Health Engineering Department, school of Public Health, Tehran University of Medical sciences

Received 23 December 2008; Accepted 17 February 2009

ABSTRACT

Background and Objectives: In the production of some high-consumed food products like cake, biscuit, chocolate and spaghetti water is used in the preparing of primary material and in the kneading processes. At the present study microbiological and chemical quality of consumed water in food industries of East Azerbaijan Province were studied.

Materials and Methods: Eleven factories with different products were selected. Water samples were collected and analyzed regarding the microbiological contamination and chemical parameters, and heavy metals. In addition, condition of water quality in selected industry was surveyed during the summer.

Results: According to the results, monitoring of water quality in the studied industries is not suitable. The chemical characteristics of consumed water in those industries had major differences. Ni, Cr, Zn, Fe and Mn were present in all analyzed water but in lower concentration than national Maximum Contaminant Level (MCL). Pb was measured in higher concentration than MCL in spaghetti factory no. 2 and close to MCL in wiener and frankfurter and sugar industries. Cd was close to MCL in spaghetti factory no. 2 and wiener and frankfurter industries.

Conclusion: It was concluded that for the safety and health of food products the food industries should use the public water supply system as water source at least in food processing units or in the units of preparing of primary materials. Also for the preventing of chemical pollution of food products it is necessary, pay more attention to the subject of water quality control according to the special water standard of food industries, and using less volume of water in some food industry isn’t acceptable reason for neglecting of water quality monitoring and assessing. In addition it is required to analyze heavy metals in the final products of those industries.

Key words: Food industries, Water, Microbiological quality, Chemical quality, Heavy metals.

*Corresponding Author: mmosaferi@yahoo.com
Tel: +98 411 3355952 Fax: +98 411 3340634