بررسی کارایی تصمیم خانه فاضلاب نیروگاه سیکل ترکیبی خوی
و بیانه سازی حذف فسفر در آن به روش بی‌هوای-هوایی

محمد آقانژاد، عضو مصداق‌نامه تیپ، فروغ واعظی

نویسنده، مسئول: تهران، دانشگاه علوم پزشکی تهران، دانشکده بهداشت، گروه بهداشت محیط

مراجع:

1- دانشجوی کارشناسی ارشد مهندسی بهداشت محیط، دانشگاه علوم پزشکی تهران
2- دکترای مهندسی بهداشت محیط، استاد دانشکده بهداشت دانشگاه علوم پزشکی تهران
3- دکترای مهندسی بهداشت محیط، دانشیار دانشکده بهداشت دانشگاه علوم پزشکی تهران
Anoxic-Oxic (A/O)
کنون در هنگامی که می‌خواهیم تأثیرات یک برگفته را بررسی کنیم، بر اساس مدل‌های نظری استفاده می‌کنیم. این مدل‌ها معمولاً در بخش‌هایی از علم‌های مختلفی مانند اقتصاد، اجتماع و جامعه‌شناسی به کار می‌رود. هدف از استفاده از این مدل‌ها، فهمیدن آنچه که ممکن است در طبیعت واقعی اتفاق بیفتد را به منظور تسریح و پیش‌بینی آنها دارد. در این بحث خواهیم کرد که چگونگی استفاده از این مدل‌ها در فناوری بهبود‌یابی (IM) را بررسی می‌کنیم.

برای درک بهتر این مدل‌ها، می‌توانیم به مثالی اشاره کنیم که بررسی کنیم چگونه این مدل‌ها می‌توانند در پیش‌بینی تأثیرات فناوری بهبود‌یابی به کار روند. در این مثال، ممکن است می‌خواهیم پیش‌بینی کنیم که چگونه فناوری بهبود‌یابی می‌تواند نتایجی که در طبیعت واقعی را نشان دهد. در این‌صورت، می‌توانیم مدل‌های نظری را به کار بگیریم و با استفاده از آنها، می‌توانیم تأثیرات علمی را به‌عنوان پیش‌بینی کرده و پیش‌بینی کنیم چگونه فناوری بهبود‌یابی می‌تواند نتایجی که در طبیعت واقعی را نشان دهد.

در این جریان، می‌توانیم به‌عنوان مثال، مقاله‌ای را بررسی کنیم که در آن می‌خوانیم چگونه فناوری بهبود‌یابی می‌تواند نتایجی که در طبیعت واقعی را نشان دهد. در این‌صورت، می‌توانیم مدل‌های نظری را به کار بگیریم و با استفاده از آنها، می‌توانیم تأثیرات علمی را به‌عنوان پیش‌بینی کرده و پیش‌بینی کنیم چگونه فناوری بهبود‌یابی می‌تواند نتایجی که در طبیعت واقعی را نشان دهد.
بهره برداری
به دلیل طراحی نامناسب و عدم راهبردی، تصمیم داده شده است برای این شرکت تصمیم بهره برداری گرفته شود.

شکل 1: نقشه شماتیک تصفیه خانه فاضلاب تیروگا خوی

 Meshชختات فاضلاب اولیه و حوض هواده (علت‌های تراکم فرآیند) به میلی‌گرم در لیتر هستند:

<table>
<thead>
<tr>
<th>مشخصه</th>
<th>حداکثری</th>
</tr>
</thead>
<tbody>
<tr>
<td>فسفر کل</td>
<td>22</td>
</tr>
<tr>
<td>ازت کل</td>
<td>23</td>
</tr>
<tr>
<td>COD</td>
<td>600</td>
</tr>
<tr>
<td>BOD</td>
<td>240</td>
</tr>
<tr>
<td>TSS</td>
<td>498 mg/L</td>
</tr>
<tr>
<td>Q</td>
<td>21.4 m³/d</td>
</tr>
<tr>
<td>بار آلی</td>
<td>4.24 kgBOD/m³.d</td>
</tr>
<tr>
<td>F/M</td>
<td>0.7/0.7</td>
</tr>
<tr>
<td>MLSS</td>
<td>7500</td>
</tr>
<tr>
<td>HRT</td>
<td>46 h</td>
</tr>
<tr>
<td>V</td>
<td>35 m³</td>
</tr>
</tbody>
</table>

نمونه برداری از قسمت‌های مختلف تصمیم‌های اعزام به واحد بهره برداری در هوای بارشی و دمای درجه زمانی 8 ماه 1890 تا 25 ماه 1890 صورت پذیرفت. نمونه‌های جمع آوری شده طبق قیاسی‌های استاندارد مورد بررسی قرار گرفت و هر ۲۴ ساعت انجام گرفته از نمونه‌های برداشته شده طبق مصرف و شرایط موجود، حاصله‌های تراکم همراه با ففزایش فرآیند تصفیه خانه و بهره برداری کاهش یافته به دلیل تغییر در مقدار و نوع مواد محلول و مولکولی در نمونه‌های تراکم اعمال می‌گردد. BOD, COD, VFA و pH, و در نهایت، تعداد باکتری‌های کلیفرم، COD, VFA و pH, و در نهایت، تعداد باکتری‌های کلیفرم،
رهایی فسفر در آن افزایش جذب فسفر در هواهای مشخص
گردیده که باکتری های بیل فسفات در سیستم رشد کره و غالب شده اند، بهره برداری تصفیه خانه و پایه غلظت فسفور خورشی نهایی کارایی حذف فسفر در 82% فسفر کل تثبیت شد.

نحوه جمع اوری و تحلیل داده ها
تحلیل آماری داده های حاصل از تمونه برداری و انجام انجم گرفته که نتایج آن در Excel آزمایش ها با ترم اندازه و بزرگی آزمایش ها در سطح های شماره 23 و 24 اخذ شد و دیلی پراگاندی گلیر میانگین های ماهانه داده ها، میانگین های ماهانه مورد ارزیابی آماری قرار گرفته اند.

نتایج
در مرحله اول به توجه به جدول 1 مشاهده می شود که کارایی حذف فسفر با وجود حذف خرب سایر آلاینده ها به دلیل مشکلاتی که قبلی بیان شد، باید است. در مرحله دوم نیز با بهره شرایط راهبردی تصفیه خانه کارایی کلی آن مخصوصا حذف فسفر بیشتر شده است که در همین جدول مشخص است.

جدول 1: مقایسه کارایی تصفیه خانه فاضلاب نیروگاه خوی در شرایط مختلف بهره برداری

<table>
<thead>
<tr>
<th>پارامتر بر دست چهار</th>
<th>میزان متوسط</th>
<th>میزان متوسط</th>
<th>میزان متوسط</th>
<th>میزان متوسط</th>
<th>میزان متوسط</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>90</td>
<td>80</td>
<td>77</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>TN</td>
<td>90</td>
<td>80</td>
<td>77</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>SP-Po4</td>
<td>90</td>
<td>80</td>
<td>77</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>TP-Po4</td>
<td>90</td>
<td>80</td>
<td>77</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>SBOD</td>
<td>90</td>
<td>80</td>
<td>77</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>BOD</td>
<td>90</td>
<td>80</td>
<td>77</td>
<td>50</td>
<td>-</td>
</tr>
</tbody>
</table>
در مراحل سوم با توجه به شکل ۲ در قسمت یی‌هازی به‌ازای هر مول فسفر آزاد شده ۲ مول بکی و حسب اسیداستیک مصرف شده که در مقایسه با مراجعه استاندارد که آن را ۵/۳ تا ۸/۰ مول استاندارد مصرف آزاد شده بایان کرده (۱) بهتر است. همچنین شکل ۱ نشان می‌دهد که بیشترین کاهش و راهیابی فسفر در محصول می‌باشد یکی می‌باشد و در ساخت و ساز روی داده است. با توجه به شکل ۳ نشان داده شده که برای خود فسفر به دست آمده که با تحقیق Wentzel ۷/۱۰ میلی‌گرم به‌ازای هر میلی‌گرم فسفر بر حسب فشار تحقیق به دست آمده است ۷/۱۰ میلی‌گرم به‌ازای هر میلی‌گرم فسفر بر حسب در مراجعه‌ی ۸/۰۱۵ میلی‌گرم به‌ازای هر میلی‌گرم فسفر در نتیجه به‌دست آمده است.

در این طرح همچنین طرح که در شکل ۳ نشان داده شده است بین تولید و مصرف آب‌و‌هوایی های تجاری مانند استاتسیس (TSS) و BOD و میانگین می‌باشد و کاهش میانگین می‌باشد و غلظت فسفر کل در پسیب خروجی روابط خطی معنی‌داری دارد و همگنی تیکی (R) یک برابر ۹۱/۰۰ به دست آمده است.

در این طرح به ۱۵/۰ رسید. که در شکل ۴ قابل مشاهده است و درصد فسفر در قسمت یی‌هازی به‌ازای هر مول بکی و حسب اسید استیک مصرف شده که در مقایسه با مراجعه استاندارد که آن را ۵/۰ تا ۷/۵ مول استاندارد مصرف آزاد شده بایان کرده (۱) بهتر است. همچنین شکل ۵ نشان می‌دهد که بیشترین کاهش و راهیابی فسفر در محصول می‌باشد یکی می‌باشد و در ساخت و ساز روی داده است ۷/۱۰ میلی‌گرم به‌ازای هر میلی‌گرم فسفر بر حسب در مراجعه‌ی ۸/۰۱۵ میلی‌گرم به‌ازای هر میلی‌گرم فسفر در نتیجه به‌دست آمده است ۷/۱۰ میلی‌گرم به‌ازای هر میلی‌گرم فسفر بر حسب در مراجعه‌ی ۸/۰۱۵ میلی‌گرم به‌ازای هر میلی‌گرم فسفر در نتیجه به‌دست آمده است.

شکل ۲ روند تغییرات در نرخ فسفر به‌ازای طرح VFA-BOD-TP

شکل ۳ رابطه رابطه، یکی می‌باشد و غلظت فسفر کل خروجی تصفیه خانه و وزن میزان مصرف (اسیدهای چرب فرار بر حسب اسید استیک) در مخزن یی‌هازی (VFA)
بحث ونتیجه گیری

در مرحله اول طرح مشخص کردن سیستم هوا دمی کشتربه به دلیل نداشتن هنیشی اولیه و بهره برداری در زمان ماند سلولی بالا و دفع لجن کمتر نسبتا در حذف معلول فسفر موفق نیست اما می توان با تنظیم پارامترهای بهره برداری کارایی آن را در حذف فسفر بهبود بخشید. دلایل بالا بودن غلظت فسفر خورشی و به بیع آن رشنبد نیش از جد جلبی در قسمت های مختلف تصفیه خانه و رودخانه باین دست، COD/BOD پایین و BOD/P نسبت شدن لجن در زوال ساز و غلظیت کندن که منجر به افزایش فسفر و برکشت آن به واردی تصفیه خانه می گردد، نیشی از بی هوایی بوده و مانند میزان BOD/P نسبت غلظت فسفر بهبود بوده کمیت سیستم قابل بهبود قرار دارد. BOD/P نسبت غلظت فسفر بهبود بوده کمیت سیستم میزان مصرف اسید چرب و در واحد بی هوایی بوده و مانند میزان BOD/P نسبت غلظت فسفر بهبود بوده کمیت سیستم میزان کارایی حذف فسفر تناغله اند که در تحقیقات بیلی مشاهده نیز این امر ثابت شده است (12). در حالی که افزایش کارایی حذف فسفر تنها به بهبود کارایی کلی تصفیه خانه مربوط به ابزار فیزیک به میزان 20/0 بوده است و در دو مرحله مربوط به بهبود سطح فسفر بهره برداری تصفیه خانه به میزان 20/0 بوده است که این افزایش کارایی در طول 6 ماه حاصل شد. اما در فرآیند A/O طبق جدول 1 افزایش زمان میزان ماند سلولی به 3 نماس و نیز بی هوایی به 3 ساعت و کاهش زمان ماند سلولی به 3

این نتایج مشخص می سازد که میزان مصرف استاندارد ۱۲۰/۰/۰ به دلیل نداشتن هنیشی اولیه و بهره برداری در زمان ماند سلولی بالا و دفع لجن کمتر نسبتا در حذف معلول فسفر موفق نیست اما می توان با تنظیم پارامترهای بهره برداری کارایی آن را در حذف فسفر بهبود بخشید. دلایل بالا بودن غلظت فسفر خورشی و به بیع آن رشنبد نیش از جد جلبی در قسمت های مختلف تصفیه خانه و رودخانه باین دست، COD/BOD پایین و BOD/P نسبت

شکل ۵: رابطه بین غلظت فسفر کل خروجی و \(\text{BOD} \) خروجی تصفیه

\[R^2 = 0.98 \]

شکل ۶: رابطه بین غلظت فسفر کل خروجی و \(\text{BOD} \) خروجی تصفیه

\[R^2 = 0.998 \]
روزافیزی M/F به ۱۲/۰ بیشتر موثر بوده اند و مطلعی ترین شرایط برای حذف فسفر در فرآیند A/O وقیت روز داد که زمان نماس یی هوازی برابر ۴ ساعت. ۲۰۰۰ میلی گرم در لیتر و زمان ماند سبلولی برابر ۳ روز بود که اینهای قابلیت نیز می‌تواند تأثیر بیشتر کاشم زمان ماند سبلولی در جد رضوان به‌فاز رشد نگارنده بکری هاست که همراه با جذب بیشتر فسفر خاصی می‌باشد. (۱۰) درکلی می‌توان نتیجه گرفت افزایش کارایی تصفیه خانه در حذف آلاینده‌ها مخصوصاً ترکیبات معنی‌دار از اصلاح شرایط بهره‌برداری و تبدیل فرآیند سبست به A/O بوده است. یکی از مراحل ویژه این تحقیق تولید استباهی کرک فوراً به غلظت ۲۰۰-۳۰۰ گرم در لیر در خود واحد به‌واسه به‌واسه ماند به‌خشي از لجی اولیه در کف این واحد و تخمیر آن بود. می‌توان ادعای کرد:

منابع

Determining the Efficiency of WWTP in Khoy Power Plant and Improving Phosphorus Removal by Anoxic-Oxic Process

*Aganeghad M., Mesdaginia A.R., Vaezi F.
Department of Environmental Health Engineering, Faculty of Tehran University Medical Science
Received 3 February 2009; Accepted 7 January 2009

ABSTRACT
Backgrounds and Objectives: Now a days modified activated sludge ways are used for standard removing nutrient substances from waste water that is named Enhanced biological phosphorus removal One of the most suitable ways is Anoxic-Oxic(A/O) process. The goal of this research is investigation and solving existing problems of Khoy power plant(P.P) waste water treatment plant(WWTP) and optimizing of phosphorus removal in it.

Materials and Methods: This research is done full scale in this treatment plant. The treatment plant was operating with extended aeration process, and some problems had, so in the first stage with in investigation of total efficiency, problems and their reasons determined. In the second stage after operational modifications existing problems was solved and real efficiency of treatment plant particularly for phosphorus (P) removal determined. In the third stage changes, system converted to A/O process and new system was tested with Changing parameters like food/microorganism(F/M), return sludge ratio(RAS) and sludge retention time(SRT).

Results: In the first stage the most important problems were over concentration of BOD, TSS, and P in effluent of treatment plant and overgrows of alga observed in parts of treatment plant and effluent receiving conduit. The main reason of high concentration of P was considered releasing of sludge. In the second stage operating condition modification efficiency of P removal increased from 50 to 62 percent. In the end of third stage value of P removal reached to %82 and the most suitable of anoxic contact time was determined 3 to 4 hours, SRT terry day and F/M ratio 0.12, that the most effective change has been the decrease of SRT to three days.

Conclusion: Adjusting of operating factors like SRT, RAS, sludge processing way in WWTP can increase P removal in them with in total efficiency remaining, such as in this case it was %12. In waste water treatment particularly for P removal the A/O process is suitable so in this project its effect on P removal efficiency has been %20.

Keywords: Wastewater treatment, Biological phosphorus removal, Anoxic/Oxic process, Khoy power plant

*Corresponding Author: m.aganejad@gmail.com
Tel: +98 914163953 Fax: +98 461 2357422