تفسیه شیاره زباله با استفاده از فراوند لجن فعال تخلیه منقطع

سهد جویی، نعته الله جعفرزاده حقیقی فرد، رفیعک رضایی کلانتری، پدیده هاشم پور

رودهای طبیعی که در ایران واقع شده‌اند، داشته‌اند. این داشته‌اند که شیروانی به روش‌های مختلفی از جمله COD و نیترات موجود در محیط آب‌های زمین‌شناسی، استفاده می‌کند. در این مقاله، تحقیق‌گرانی در زمینه فعال کنترل و آزمون‌های خاک سازی، به کاربرد پودر کربن فعال (PAC) به‌عنوان یکی از روش‌های جدید تحقیق، منطقه‌های مورد استفاده در ژئوکامپیاگهای لجن تحقیق مورد بررسی قرار گرفت. به‌منظور بررسی قابلیت پودر کربن فعال به میزان 50 گرم بر لیتر به طور مستقیم به روش‌های موجود در کتابهای وابسته، در این استادی، فعال تخلیه منقطع در زمینه‌های مختلف، به‌عنوان یکی از روش‌های جدید TDI، به کاربرد پودر کربن فعال به ترتیب معادلات 0/87 و 0/54 درصد و در زمینه‌های مختلف به ترتیب معادلات 0/98 و 0/97 درصد به کارگزاران کلیدی: شیرازه، تجزیه زبسی، لجن فعال، تخلیه منقطع، پودر کربن فعال

1- دانشجوی دکترای بهداشت محیط، گروه بهداشت محیط و حرفه ای، دانشکده علوم پزشکی دانشگاه تهران، مدرس
2- دکترای بهداشت محیط، دانشگاه علوم پزشکی تهران
3- دکترای مدیریت محیط زیست، استادیار گروه بهداشت محیط، دانشکده بهداشت دانشگاه علوم پزشکی ایران
4- دانشجوی کارشناسی ارشد مدیریت محیط دانشگاه علوم پزشکی جنوبی شاپوره اهواز
مقدمه

دفن بهداشتی مواد زاید جامد سطحی به شکل گسترده‌ای به عنوان یک روش دفع در کشورهای در حال توسعه مورد استفاده قرار گرفته است. به دلیل میزان ضعیف بسیاری از مواردی دفن همواره امکان نشته شیرابه به عنوان یک تهیه کننده مولایی زیستی وجود داشته است. (1) با توجه به روند فراوانی تولید مواد زاید جامد به دلیل افزایش جمعیت، شاهرنگه و صنعتی، این موارد اهمیت زیادی پایتخت دارد. محصول کربن شیرابه و تصفیه مناسب آن به عنوان یکی از اصلی‌ترین جزویت محصولی از نقش شیرابه در حفظ محیط زیست که تحت حمایت آن به طور کامل راه حل اساسی برای آن یافته شده است. (2) علاوه بر چگونگی از نشته شیرابه به استفاده از آبیه‌های موثر، ضروری است تا شیرابه به روش یا مواد دیگر تصفیه شود. (3) گفتیم بهداشتی مواد زاید به سمت فناوری بهداشتی و مرحله تجزیه بیولوژیکی مواد زاید در دوران آن سیستمی در که ارزیابی مقادیر مختلف مواد آلی (COD) ذیل گروه‌های مختلف محصولات آماده (MgNHPO3H2O) در گروه به شکل مولکولی متغیر در حفظ غلتی های بالایی از فضای فلزی‌های سطحی نیاز به حاصله دارد. سپس به روش کربنیزهای به صورت مولکولی (NH4) ۲۰۰۰۰-۱۵۰۰۰ به روش H2O فاقد به این، در شیرابه های فاقد بازدارنده شیاهی نیتریکسایسون به دلیل حضور ضایعات آماده بیولوژیکی آماده آماده و میزان باردارنده ای بسیار ترکیبات سرطانی (5). تصفیه شیرابه به دلیل غلتیهای بالایی COD و نیتریورelandست کمیلی می‌باشد. از سویی دیگر، ماهیت آن اثر آلودگی های محصول در شیرابه و برای موارد کربنترین منجر به کاربرد در شیرابه است. (6) علاوه بر این، در شیرابه های قوی بازدارنده شیاهی نیتریکسایسون به دلیل حضور ضایعات بالایی آماده آماده و میزان باردارنده ای مانند ترکیبات سرطانی می‌باشد. (7) چکننده نشان داده است که عملکرد فراوانی این جمل با نشان داده شده است. با توجه به موارد مذکور، کلیه این تحقیقات به دلیل ضعف بسیاری از راهکار متون تابوسته است که در آن فضای‌های به صورت پیوستار وارد شده و همان مراحل شیرابه یکی از موارد بهداشتی ممکن است رخ می‌دهد. (8) تأثیر غلتیهای بالایی NH4-N به نشان داده است که تابع شیرابه آماده به فاقد زینستی به عوامل برای میکروگانیسم‌ها نشان داده شده است.
روشک رضایی کلاپتی و همکاران

SVI=۹۴۵ (mL/g), ML VSS = ۸۱۲۰-۸۱۶۵ (mL/g), ML SS = ۴۳۴۲-۴۸۸۰ (mL/g), TCOD = ۱۱۵۰-۱۱۳۰۰ (mL/g), pH= ۷ / ۵-۴

تعیین در بهینه پودر کریم فعال
پک آزمایشی مقداماتی در شرایط نمایشگاه برای تعیین در بهینه پودر کریم فعال چه جهت کاربرد در بررسی اصلی مطالعات با جراین بیومسم انجماد شد. اندام کریم فعال پودری مورد استفاده در این مطالعه ۱۲۰۰ میکرو متر بود. در اینجا پودر کریم فعال پیش از تزریق به راکتورهای هوادهی مقياس آزمایشگاهی در ۱۲۰ درجه سانتیگراد خشک شد. بیش از ۱۲۰۰ میکرو لیتر شیرباسه رقیق شده و ۵۰۰ میلی لیتر لجن فعال انجماد شد. سپس پدیداری مختلف پودر کریم فعال (۵/۰-۵/۰ گرم بر لیتر) به شبکه افروزی شده و محتوای آن به مدت ۳ روز هوادهی شد. سپس میزان حذف گیاهی به سبب پودر سازی لجن فعال

سازگاری سایز لجن فعال
لجن از طریق تزریق آرام شیرباسه به حوضچه هوادهی حاوی لجن فعال سازگار شد. این فرآیند با نسبت اولیه مخلوط لجن به شیرباسه ۵/۰ لیتر از هر کدام آغاز شد (۷). مخلوط به مدت یک روز هوادهی شده و سپس ۵ لیتر از منبع روبیت اضافه شد و با ۵/۰ لیتر شیرباسه جدید جایگزین شد. به همین منظور، روند سازگاری سایز به صورت پیوسته به راکتور اضافه شد. لیتر از ۱/۵ لیتری به مخلوط روزانه و جایگزینی شیرباسه جدید با افزایش ۰/۵ لیتری در هر مخلوط جایگزینی به میزان به متریکس ۰/۱۵ و ۲ لیتر اضافه ایفا کننده درک اضافی راکتور به ۱۰ لیتر افزایش یافت. حذف pH و COD به صورت روزانه مورد پایش قرار گرفت. دره سازگاری‌سازی یک پهنه ادامه پایه و به میزان ۲ درصد ثابت ماند. لجن سازگار شده به عنوان بذر میکسی در راکتورهای هوادهی باید مطالعات بعدی مورد استفاده قرار گرفت.

توجه، و اکثراً، نشان دهنده همانند راکتور مویالی نابویسه در آن رخ می‌دهد (15).

از پودر کریم فعال برای بهبود کاربرد تصفیه زیستی در خاک ترکیبات آلي مقاوم و همچنین ترکیبات غیر آلي مانند پتولین، سولفید و فلزات سدنگین و تسهیل تیتریفاکساپون استفاده شده است (15) در رایانش که با کاربرد پودر کریم فعال مویال را به طور کامل ممکن است از انجماد تیتریفاکساپون را مربع کردن (15). تزریق پودر کریم فعال در حوضچه هوادهی برای تصفیه شیرباسه دهنده بهداشت در چندین مطالعه ارزیابی قرار گرفت که نتایج قابل قبولی را به همراه داشت (19-۱۶).

از نگاهی که به نظر می‌رسد که تصفیه زیستی هوادهی شیرباسه به نهایت نمی‌تواند استانداردهای پساب خوری برای تخلیه به آب‌های پذیرفته را برآورده سازد. استفاده از پودر کریم فعال در راکتور هوادهی برای افزایش کیفیت پساب در این مطالعه مورد ارزیابی قرار گرفت. هندسی اصلی از این مطالعه ارزیابی تجربه زیستی شیرباسه بر روی لجن فعال تخلیه مقطع بس از struvite و مقایسه کاربرد و عدم کاربرد پودر کریم فعال در راکتور هوادهی بوده است.

مواد و روش ها
نمونه برداری شیرباسه
نمونه‌های شیرباسه از مسکان دفن موای زاید جامد تهران(مکزیک دفن که فرآیند جنگنده تولید می‌شود) در زمستان سال ۱۳۵۷ جمع‌آوری شده که در جنوب تهران واقع شده است. نمونه‌های جمع‌آوری از سه نقطه سانتی‌گراد نگهداری شده و پس از انتقال به آزمایش‌گاه دانشگاه بهداشت دانشگاه علوم پزشکی ایران مورد آزمایش قرار گرفتند.

مشخصات لجن فعال
لجن فعال مورد استفاده در این مطالعه از لجن فعال برگشته یک تصفیه خانه فاضلاب شهري بهداشت شد.

مشخصات لجن فعال به شرح زیر است:
روش آزمایشگاهی

همه آزمایش‌های موجود در آزمایشگاه‌های آب و فاضلاب انجام شده‌اند.

- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.

- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach بوده است.
- ترکیب مواد مورد استفاده بر اساس توصیه‌های Hach B
نتایج

شیراهه خام پس از انتقال به آزمایشگاه مورد آنالیز کیفی قرار گرفت که نتایج آن در جدول ۱ نشان داده شده است.

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>سطح</th>
<th>غلظت در شیراهه خام (mg/L)</th>
<th>مقدار</th>
<th>کیفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلسیم</td>
<td>۶۰</td>
<td>۵۰۰</td>
<td>۵۰۰-۶۰۰</td>
<td>خوب</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۴۰</td>
<td>۵۰۰</td>
<td>۵۰۰-۶۰۰</td>
<td>خوب</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۲۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰-۶۰۰</td>
<td>خوب</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۴۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰-۶۰۰</td>
<td>خوب</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۶۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰-۶۰۰</td>
<td>خوب</td>
</tr>
<tr>
<td>کلسیم</td>
<td>۸۰۰</td>
<td>۵۰۰</td>
<td>۵۰۰-۶۰۰</td>
<td>خوب</td>
</tr>
</tbody>
</table>

(۱) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۲) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۳) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۴) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۵) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۶) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۷) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۸) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۹) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۰) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۱) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۲) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۳) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۴) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۵) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۶) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۷) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۸) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۱۹) افزایش: بیش‌ترین غلظت سطح مبتنی بر میزان آب‌های انتقالی است.

(۲۰) کاهش: کاهش غلظت سطح مبتنی بر میزان آب‌های انتقالی است.
مرحله غلظت آمونیاک به ۲۲۹ میلی گرم بر لیتر گرم کاهش بافت که بازده حذف آن در pH معادل ۷/۶/۶/۶۹ در رپر با معادل ۸۹ درصد سطح بر روی شیرای خام struvite بود. غلظت سفید به اندازه مرحله ترکب به روسری به میزان ۱۹۶ میلی گرم بر لیتر آغازه گرفت. از سویی دیگر حذف مواد آلی محدود بوده و غلظت تا کل و COD محلول بالای مانده به ترتیب ۳۸۱۵ و ۳۱۵۶ میلی گرم بر لیتر بود که بازده حذف آن معادل ۴۲ و ۱۷ درصد بود.

ترکیب به روی مرحله ترکب به روسری struvite نتایج ترکیب به روسری struvite دفن زباله با نسبت استخوانی ۱۰ به ۱ از اینجیش (نسبت میزان به لیتره ۳ مول بر ۱ امول) در گستر مغذی pH بین ۶/۷۰ تا ۷/۴۲ در جدول ۲ نشا ۲۲۶ داده است. نتایج آزمایشات ترکیب به روسری ترکیب به روسری pH آمونیاک با فاکتور pH می‌باشد. در پایان این

جدول ۲. نتایج ترکیب به روسری شیرای خام

<table>
<thead>
<tr>
<th>pH</th>
<th>Mg (mg/L)</th>
<th>Ca (mg/L)</th>
<th>PO4-P (mg/L)</th>
<th>NHR (mg/L)</th>
<th>TKN (mg/L)</th>
<th>SCOD (mg/L)</th>
<th>TCOD (mg/L)</th>
<th>[NH]-[Mg][PO4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷/۴۲</td>
<td>۶۹۲</td>
<td>۹۳۰</td>
<td>۲۸۴</td>
<td>۲۸۵</td>
<td>۲۹۴</td>
<td>۲۹۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۳۲</td>
<td>۱۴۷</td>
<td>۲۸۶</td>
<td>۲۴۴</td>
<td>۲۴۴</td>
<td>۲۴۴</td>
<td>۲۴۴</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۶۱</td>
<td>۱۱۲</td>
<td>۲۳۷</td>
<td>۲۳۷</td>
<td>۲۳۷</td>
<td>۲۳۷</td>
<td>۲۳۷</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۸۲</td>
<td>۱۰۵</td>
<td>۲۹۳</td>
<td>۲۱۶</td>
<td>۲۱۶</td>
<td>۲۱۶</td>
<td>۲۱۶</td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷/۸۲</td>
<td>۹۳</td>
<td>۲۸۴</td>
<td>۱۹۴</td>
<td>۱۹۴</td>
<td>۱۹۴</td>
<td>۱۹۴</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

الف: ترکیب مولکولی مرحله که هر یک از اعضای ورودی مرحله تجزیه زیستی مورد استفاده قرار گرفت

ب: ئی۴۱/۲/۰۵

تعیین دز بههه کربن فعال

شکل ۲ نشان می‌دهد که با فاکتور pH مرحله ترکیب به روسری COD میزان حذف COD آغازه گرفت. بازده حذف COD در هنگام کاربرد ۳/۷۵ میلی گرم بر لیتر پودر کربن فعال ۳۲ درصد (انحراف معیار ± ۲/۸۹) بود. با توجه به نتایج گرفتن بازده حذف

شکل ۲: نتایج کاربرد پودر کربن فعال بر روی حذف COD

۲۱
کارایی فرآیند تصفیه بدون کاربرد پودر کربن فعال
نتایج راهبرد راکتور لجن فعال تخلیه مقطع در زمان ماند
هیدرولیکی ۶ ساعت به حذف P به ترتیب معادل ۲۷ (انحراف معیار ± ۲۴/۰۵)، ۲۶/۲۴۴ (انحراف معیار ± ۲۴/۰۵) و ۲۸/۷۱۵ (انحراف معیار ± ۴/۸۲۴) درصد بوده است.

جدول ۳: نتایج راهبرد راکتور لجن فعال تخلیه مقطع در زمان ماند هیدرولیکی ۶ ساعت

<table>
<thead>
<tr>
<th>فرآیند لجن فعال تخلیه مقطع</th>
<th>پودر کربن فعال</th>
<th>ظرفیت خروجی</th>
<th>ضریب به روش</th>
<th>شرایط خام</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>خروجی</td>
<td>درصد حذف</td>
<td>درصد حذف</td>
<td>درصد حذف</td>
<td>درصد حذف</td>
<td></td>
</tr>
<tr>
<td>۸۷</td>
<td>۴۱۰</td>
<td>۴۶</td>
<td>۲۸۷۳</td>
<td>۲۴</td>
<td>۵۰۲۰</td>
</tr>
<tr>
<td>۹۰</td>
<td>۳۸۰</td>
<td>۳۶</td>
<td>۲۴۴</td>
<td>۱۷</td>
<td>۳۱۲۵</td>
</tr>
<tr>
<td>۹۸۲</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۱۸</td>
<td>۲۴۰</td>
</tr>
<tr>
<td>۹۶</td>
<td>۱۰</td>
<td>۱۲</td>
<td>۷۸۵</td>
<td>۲۲</td>
<td>۵۲</td>
</tr>
</tbody>
</table>

افلام: همه داده‌های ارائه شده بر اساس نتایج حاصل از راهبرد پایدار اخذ شده اند.

کارایی فرآیند تصفیه بدون کاربرد پودر کربن فعال
پژوهشگران به حذف P به ترتیب معادل ۲۷ (انحراف معیار ± ۲۴/۰۵) و ۲۶/۲۴۴ (انحراف معیار ± ۲۴/۰۵) و ۲۸/۷۱۵ (انحراف معیار ± ۴/۸۲۴) درصد بوده است.

کارایی فرآیند تصفیه همراد با کاربرد پودر کربن فعال
در شرایط یکسان کارایی راکتور به هنگام کاربرد پودر کربن
فعال مورد بررسی قرار گرفت که نتایج آن در جدول ۳ نشان داده شده است. پژوهشگران به حذف P و NH₄-SCOD،TCOD به ترتیب معادل ۵۶ (انحراف معیار ± ۰/۱۸۳)، ۶۱ (انحراف معیار ± ۰/۱۸۶) و ۶۱ (انحراف معیار ± ۰/۱۸۶) درصد بوده است.

کارایی فرآیند تصفیه با کاربرد پودر کربن فعال
کاراگان می‌تواند در کاهش پارامترهای مورد بررسی در
این مراحل در جدول ۳ نشان داده شده است. پژوهشگران به حذف P به ترتیب معادل ۹۵ (انحراف معیار ± ۲/۴۹۸)، ۹۴/۸۹ (انحراف معیار ± ۲/۴۹۸) و ۹۴/۸۹ (انحراف معیار ± ۹/۹۸۵) درصد بوده است.

راهبردی راکتور لجن فعال تخلیه مقطع در زمان ماند هیدرولیکی ۱۲ ساعت
در این بخش از مطالعات زمان ماند هیدرولیکی می‌شود به
۱۲ ساعت (بار آئی ۲/۴۹ گرم COD بر گرم VSS) در روز
افراشی فاکتور و راکتورهای لجن فعال تخلیه مقطع در شرایط
یکسان با و بدون کاربرد پودر کربن فعال مورد بررسی قرار
گرفته‌اند.
جدول ۲: نتایج راهبردی راکتور لجن فعال تخلیه منطقه در زمان ماند هیدرولیکی ۱۲ ساعت

<table>
<thead>
<tr>
<th>فرازیده لجن فعال تخلیه منطقه با</th>
<th>ترسیب به روش</th>
<th>شیارهای شمای</th>
<th>فاصله خروجی درصد حذف</th>
<th>فاصله خروجی درصد حذف</th>
<th>COD (mg/L)</th>
<th>SCOD (mg/L)</th>
<th>NH₃ (mg N/L)</th>
<th>PO₄-P (mgP/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بداهه پر کردن قرن فعال لجن</td>
<td>Truvite</td>
<td>شیارهای شمای</td>
<td>۹۵</td>
<td>۹۵</td>
<td>۹۳</td>
<td>۹۰</td>
<td>۸۹</td>
<td>۸۸</td>
</tr>
<tr>
<td>بداهه پر کردن قرن فعال لجن</td>
<td>Truvite</td>
<td>شیارهای شمای</td>
<td>۹۳</td>
<td>۹۰</td>
<td>۸۹</td>
<td>۸۸</td>
<td>۸۷</td>
<td>۸۶</td>
</tr>
<tr>
<td>بداهه پر کردن قرن فعال لجن</td>
<td>Truvite</td>
<td>شیارهای شمای</td>
<td>۹۰</td>
<td>۸۷</td>
<td>۸۶</td>
<td>۸۵</td>
<td>۸۴</td>
<td>۸۳</td>
</tr>
<tr>
<td>بداهه پر کردن قرن فعال لجن</td>
<td>Truvite</td>
<td>شیارهای شمای</td>
<td>۸۷</td>
<td>۸۴</td>
<td>۸۳</td>
<td>۸۲</td>
<td>۸۱</td>
<td>۸۰</td>
</tr>
<tr>
<td>بداهه پر کردن قرن فعال لجن</td>
<td>Truvite</td>
<td>شیارهای شمای</td>
<td>۸۴</td>
<td>۸۱</td>
<td>۸۰</td>
<td>۷۹</td>
<td>۷۸</td>
<td>۷۷</td>
</tr>
<tr>
<td>بداهه پر کردن قرن فعال لجن</td>
<td>Truvite</td>
<td>شیارهای شمای</td>
<td>۸۱</td>
<td>۷۸</td>
<td>۷۷</td>
<td>۷۶</td>
<td>۷۵</td>
<td>۷۴</td>
</tr>
<tr>
<td>بداهه پر کردن قرن فعال لجن</td>
<td>Truvite</td>
<td>شیارهای شمای</td>
<td>۷۸</td>
<td>۷۵</td>
<td>۷۴</td>
<td>۷۳</td>
<td>۷۲</td>
<td>۷۱</td>
</tr>
<tr>
<td>بداهه پر کردن قرن فعال لجن</td>
<td>Truvite</td>
<td>شیارهای شمای</td>
<td>۷۵</td>
<td>۷۲</td>
<td>۷۱</td>
<td>۷۰</td>
<td>۶۹</td>
<td>۶۸</td>
</tr>
</tbody>
</table>

الف: همه داده های ارائه شده بر اساس نتایج حاصل از راهبردی در شرایط پایدار اخذ شده‌اند.

بحث و نتایج گیری

تصفیه زیستی مستقیم شیرابه خام دفن بهداشتی به دلیل بار آن بالا و وجود ترکیبات سمی مانند فلزات سنگین که بازارانده رشد توده میکرو اکسپلئس ان هستند، درایه حذف مطلوبی نمی‌باشد(۲۲). لذا کاهش بهره کاربرد ترسیب به روش بهترین روش جزئی زیستی به منظور حذف آمونیاک بود که مطالعات های بالای آن در شیرابه خام در فرازیده تجزیه زیستی اختلال ایجاد می‌کند(۲۲). داده‌های موجود در دجله ۲ نشان می‌دهد که پس از مرحله ترسیب شیمیایی، غلظت‌های فسفور و این باعث ماندگی فاضلاب ورودی به فرازیده تصفیه زیستی، برای انجام تصفیه زیستی کافی بوده و نیاز به افزودن مواد مغذی به راکتور هواده وجود ندارد (بر اساس نسبت بهره درجه مواد مغذی مورد نیاز با تجزیه زیستی: C/N/P: ۱:۶:۱). داده‌های دست نشان می‌دهد در این مطالعه برای ترسیب به روش با مطالعات مشابه مطاوعت زیستی دارد(۲۵). داده‌های دست نشان می‌دهد برای ترسیب به روش با مطالعات مشابه مطاوعت زیستی دارد(۲۵).
روشک‌های رضایی کلاتری و همکاران

احتمالاً راهبری در غلظت‌های اکسیژن محلول کم و زمان ماندن هیدرولیک طولانی معادل 12 ساعت و همچنین تخلیه متقطع مابع پرداخته‌های واقع در زمان لجعت تخلیه متقطع منجر به تجمع موادی درون راکتور شده که تا ناحیه‌های مورد و در قسمت‌های دارای اتصال ناکافی در دیوار راکتور هوازی شرل شباهت به هوشیاری و اکسکیسیون که در اولین است. غلظت فسفور خرچنگ در شرایط راهبری سیستم لجع مانند هیدرولیکی معادل 12 ساعت و افزودن پردازه کننده فیور (درصد) که تغییر زنده به استانداردهای فسفور خرچنگ در پس‌بآم 9 میلی‌گرم به تغییر درصدی 13 میلی‌گرم به تغییر درصدی.

با توجه به نتایج حاصل از این مطالعه می‌توان نتیجه گرفت که در فاصله‌های اثرات تخلیه نمی‌تواند با زمان مانده. هیدرولیکی معادل 12 ساعت گذشته که با پردازه‌بندی درون می‌تواند در فاصله کامل است تحقیق‌های دیگر تحلیلی که می‌تواند استانداردهای تخلیه پس‌بآم به این‌طور پذیرنده را به لحاظ مواد آلی، فسف و نیترژن آمونیکا تأمین کند.

منابع

Leachate Treatment by Batch Decant Activated Sludge Process and Powdered Activated Carbon Addition

Sahand Jorfi S.1, Jaafarzadeh N.2, *Rezaei Kalantary R. 3, Hashempour Y.4
1 Department of Environmental Health Engineering, Tarbiat Modaress University Tehran, Iran
2 Department of Environmental Health, School of Health, Ahvaz Jondishapour University of Medical Sciences, Ahwaz, Iran
3 Department of Environmental Health, School of Health, Iran University of Medical Sciences, Tehran, Iran
4 Department of Environmental Health Master of Science in Ahvaz Jondishapour University of Medical sciences, Ahvaz, Iran

Received 11 Mars 2009; Accepted 19 May 2009

ABSTRACT

Backgrounds and Objectives: Direct biodegradation of landfill leachate is too difficult because of high concentrations of COD and NH₃ and also the presence of toxic compounds. The main objective of this study was to application of Struvite precipitation as a pretreatment stage, in order to remove inhibitors of biodegradation before the batch decant activated sludge process with addition of powdered activated carbon (PAC).

Materials and Methods: Struvite precipitated leachate was introduced to a bench scale batch decant activated sludge reactor with hydraulic retention times of 6 and 12 hour. PAC was added to aeration tank directly at the rate of 3.5 g/L.

Results: TCOD, SCOD, NH₃, and P removal efficiency with addition of PAC in HRT of 6 h were 90, 87, 98.3 and 94 % respectively and 96, 95, 99.2 and 98.7 % in HRT of 12 h.

Conclusion: According to obtained data from this work, it can be concluded that Struvite precipitation before batch decant activated sludge process and simultaneous addition of PAC is promising technology for leachate treatment and can meet effluent standards for discharge to the receiving waters.

Keywords: Leachate, Biodegradation, Batch decant activated sludge, Powdered activated carbon

*Corresponding Author: roshanak_rezaiekalantary@yahoo.com
Tel: +98 21 88779118 Fax: +98 21 88779118