تصفیه شیرابه زباله با استفاده از فراوند لجن فعال تخلیه منقطع و کاربرد پودر کربن فعال

سهد جرفی؛ نعمت الله جعفرزاده حقیقی فرد؛ روشک رضایی کلاتری؛ بلدا هاشم پور

روش پودر کربن فعال

دریافت: 8/8/97

چکیده

زمینه و مهدف: کاربرد مستقیم تجزیه زیستی هوازی برای تصفیه شیرابه به دلیل غلظت بالای COD و نیتروژن و مهمان حضور ترکیبات سمی بسیار دشوار می باشد. هدف از این مطالعه استفاده از ترکیب شیمیایی به روش struvite به عبارت تصفیه به ویژه حذف قابل توجه اجزاء بازدارنده تجزیه زیستی کلی از فراوند لجن فعال به روش راکتور تخلیه منقطع همراه با کاربرد پودرکربن فعال (PAC) برای تصفیه جنگلی از زمینه های ماند هیدرولیکی 4 و 12 ساعت در راکتورهای مقاله آزمایشگاهی لجن فعال تخلیه منقطع مورد تحقیق قرار گرفت. پودرکربن فعال به میزان 3.5 کرم بر لیتر به طور مستقیم به راکتور هواهده تری هم مشتمل فعال تخلیه منقطع در زمینه های ماند هیدرولیکی 6 ساعت و 12 ساعت به ترتیب محصول 28.8 و 3.4 درصد و در زمان ماند 12 ساعت به ترتیب معادل 96.4 و 98.6 درصد پودر کربن فعال به ترتیب معادل 90 و 76 درصد بود.

نتیجه گیری: بر اساس نتایج به دست آمده می توان نتیجه گیری کرد که ترکیب شیمیایی به روش struvite پیش از فراوند لجن فعال تخلیه مقطع همراه با کاربرد پودر کربن فعال قابل قبول و با وارد کردن بیمار مناسب برای تصفیه شیرابه بوده و قادر به تأمین استاندارد تخلیه پساب به آب های پذیرنده می باشد.

واژگان کلیدی: شیرابه، تجزیه زیستی، لجن فعال، تخلیه منقطع، پودر کربن فعال

1- دانشجوی دکترای بهداشت محیط، گروه بهداشت محیط و حرفه ای دانشگاه علوم پزشکی دانشگاه تربیت مدرس
2- دکترای بهداشت محیط، دانشگاه علوم پزشکی ایران
3- دکترای مهندسی محیط زیست، استادیار گروه مهندسی بهداشت دانشگاه علوم پزشکی ایران
4- دانشجوی کارشناسی ارشد مهندسی بهداشت محیط دانشگاه علوم پزشکی جنوب شایور اهواز
صفحه شیرابه زباله با استفاده از...

مقدمه

دفن بهداشتی مواد زاید جامد شهروندی را به شکل گسترده‌ای به عنوان یک روش همگون در کشورهای خارجی توسعه مورد استفاده قرار گرفته است. به دلیل مدیریت غلظت بسیاری از مواد زاید جامد به عنوان یک تهیه‌کننده جریان فلزی، این مواد ممکن است برایIRA (6) تعیین شود. با توجه به استفاده مواد زاید جامد به دلیل افزایش جمعیت گزارش‌دهنده، چنین مطالعاتی به‌نوبت در این مورد ضروری است. این شوک به سایر زیادی و مصرف توجه به عوامل زیادی به‌طور کامل راه حل اساسی برای آن ها پاسخ نمی‌دهد (3). علاوه بر این بر اساس اثبات در نسبت شیرابه با استفاده از این بالعدهای مشکل، ضروری است تا شیرابه به روش های مناسب‌تری تصفیه شود تا استانداردهای تخلیه به مانع پذیرند. این مورد که مصرف شیرابه با مشکلی فلزی به‌طور کامل می‌تواند به‌طور کامل مورد استفاده قرار گیرد (4).

که به‌طور کامل مایع در منابع به‌طور کامل نمایش داده می‌شود. به دلیل اینکه عوامل زیادی و عدم میزان شیرابه با استفاده از این بالعدهای مشکل، ضروری است تا شیرابه به روش های مناسب‌تری تصفیه شود تا استانداردهای تخلیه به مانع پذیرند. این مورد که مصرف شیرابه با مشکلی فلزی به‌طور کامل می‌تواند به‌طور کامل مورد استفاده قرار گیرد (4).

که به‌طور کامل مایع در منابع به‌طور کامل نمایش داده می‌شود. به دلیل اینکه عوامل زیادی و عدم میزان شیرابه با استفاده از این بالعدهای مشکل، ضروری است تا شیرابه به روش های مناسب‌تری تصفیه شود تا استانداردهای تخلیه به مانع پذیرند. این مورد که مصرف شیرابه با مشکلی فلزی به‌طور کامل می‌تواند به‌طور کامل مورد استفاده قرار گیرد (4).

که به‌طور کامل مایع در منابع به‌طور کامل نمایش داده می‌شود. به دلیل اینکه عوامل زیادی و عدم میزان شیرابه با استفاده از این بالعدهای مشکل، ضروری است تا شیرابه به روش های مناسب‌تری تصفیه شود تا استانداردهای تخلیه به مانع پذیرند. این مورد که مصرف شیرابه با مشکلی فلزی به‌طور کامل می‌تواند به‌طور کامل مورد استفاده قرار گیرد (4).

که به‌طور کامل مایع در منابع به‌طور کامل نمایش داده می‌شود. به دلیل اینکه عوامل زیادی و عدم میزان شیرابه با استفاده از این بالعدهای مشکل، ضروری است تا شیرابه به روش های مناسب‌تری تصفیه شود تا استانداردهای تخلیه به مانع پذیرند. این مورد که مصرف شیرابه با مشکلی فلزی به‌طور کامل می‌تواند به‌طور کامل مورد استفاده قرار گیرد (4).
تعین در بهینه پودر کربن فعل
یک آزمایش مقدماتی در شرایط نابودی‌برای تعیین در بهینه پودر کربن فعل جهت کاربرد در پیش بستن مطالعات با جریان بیوشیمی انجام شد. اندیش کردن فعال پودر کربن مورد استفاده در این مطالعه 120-300 میکرون بود. در ابتدا پودر کربن فعال قبل از تزریق به راکتورهای هوادی مقياس آزمایشگاهی در 13 درجه سانتی‌گراد شکست شد. این آزمایش در 6 تیر یک لیتری با 400 میلی لیتر شیارین رقی شده و 500 میلی لیتر لجن فعال انجام شد. سپس مقدار مختلف پودر کربن فعل (5/5-10 گرم بر لیتر) به بسترها افزوده شد و ملاحظات آن به مدید 3 روز هوادی شد. سپس میزان حذف به‌طور تعیین شد.

سازگاری لاکن فعل
لجن از طریق تزریق آرام شیرابه به حوضچه هوادی حاصل
لجن فعال سازگار شد. این فرانوانی با نسبت اولیه مخلوط لجن به شیرابه 10:1 از هر کدام آغاز شد(7). مخلوط به مدت یک روز هوادی شده و سپس 3/5 لیتر از ماکرو ریپین برداشت شد و به شیرابه 5/5 لیتر مخلوط شد. سپس هوادی به صورت پوسته به راکتور برداشت شد. منوی کاربرد جدید جایگزین شد. به همین منوال روغن و رود سازگاری سازی به صورت پوسته به راکتور در 1/5 لیتر از ماکرو ریپین به راکتور برداشت شد. همچنین از هر مخلوط جایگزینی به مرحله کربنریزی به مرحله تریپ 1/15 و 2/5 لیتر ادامه پاتن با 10 لیتر به صورت روزانه مورد افزایش. جذب pH و COD به صورت کسب قرار گرفت. دهه سازگاری مسایل بخش هدایت ادامه پاتن و به مردان 77 درصد ثابت ماند. لجن سازگار شده به عنوان بعد مکیبی در راکتورهای هوادی برای مطالعات بعدی مورد استفاده قرار گرفت.

مواد و روش ها
نمونه برداری شیرابه
نمونه های شیرابه از میانهکننده ها مورد تهیه (مکزهد که زیرک باکتری مخلوط دندان بهداشتی دستگاه) در زمستان سال 1395 جمع آوری شد که در جنوب تهران واقع شده است. نمونه های جمع آوری شده در 4 درجه سانتی گراد درجه حرارت شده و پس از انتقال به آزمایشگاه دانشگاه بهداشت دانشگاه علوم پرستاری ایران مورد آزمایش قرار گرفتند.

مشخصات لجن فعل
لجن فعال مورد استفاده در این مطالعات از طریق لجن فعال برگشتی یک تصفیه خانه فاضل شری بهداشت شد. مشخصات لجن فعل به شرح زیر است:

SVI=945 (mL/g), ML VSS = 8120-8165 (mL/g), ML SS = 4344-4980 (mL/g),
TCOD = 1150-11310 (mL/g), pH= 7.50 / 6
راکوره‌های لجن فعال جریان منطق
مقطع به حجم 10 لیتر در مقیاس آزمایشگاهی بود. پرور گیرنده
فعالیت (120-45 میکرومنت) با 30 گرم بود. لجن راکتور به
صینور مشاهده و همزمان در دمای اتان و در pH
معدل 7/5 راهپیمایی کرد.

راهمی سیستم

آزمایش‌های ترسبی به وسیله struvite در یک مخزن آزمایش‌های ترسبی به وسیله struvite به 20 لیتری مجهز به همزن با دور منگر انجم شد. از عضویت موارد

شیمیایی و تنظیم pH تحت شرایط اخلاقی تبدیل انجم شد. در همه مراحل تراتسی به وسیله متغیر می‌باشد NaH2PO4, YH2O و MgCl2, H2O از

مینیم و فسفات استفاده شد. در همه مراحل تراتسی به وسیله روش و فسفات در نسبت‌های شیمیایی به آمادگی struvite (FS/NT

نسبت N/NT به ازت 1 مول بر مول) مورد استفاده قرار

گرفته(1).

با استفاده از H2SO4)، با HCl ترسبی به وسیله NaOH

به وسیله صاف میلی پور با اندام انفصال 3/5 میکرومنت صاف

شده سپس مورد آتارسی به اندام انفصال رسید. این شیمیایی به وسیله به وسیله قرار گرفت. صافیه میلی پور با اندام انفصال

شده به وسیله صافیه میلی پور با اندام انفصال

فیلتر مشاهده و همزمان در دمای اتان و در pH

راهپیمایی کرد.

یک کدام نتیجه نداشت.
نتیجه

شیرابه خام پس از انتقال به آزمایشگاه مرور آنالیز کیفی قرار گرفته که نتایج آن در جدول 1 نشان داده شده است.

جدول 1: یواسگی های تولید های شیرابه جمع‌آوری شده از مرکز دفن کهنه‌پز تهران

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>استاندارد خروجی</th>
<th>میانگین</th>
<th>کیفیت</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mg/L) COD</td>
</tr>
<tr>
<td>کل</td>
<td></td>
<td>0.5-0.7</td>
<td>0.5-0.7</td>
</tr>
<tr>
<td>آمونیاک</td>
<td></td>
<td>6-8.5</td>
<td>6-8.5</td>
</tr>
<tr>
<td>نیترات</td>
<td></td>
<td>0.5-5.0</td>
<td>0.5-5.0</td>
</tr>
<tr>
<td>نیتریت</td>
<td></td>
<td>0.5-5.0</td>
<td>0.5-5.0</td>
</tr>
<tr>
<td>کلسیم</td>
<td></td>
<td>0.5-5.0</td>
<td>0.5-5.0</td>
</tr>
<tr>
<td>پلی‌پتیت</td>
<td></td>
<td>0.5-5.0</td>
<td>0.5-5.0</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>6.5-7.5</td>
<td>6.5-7.5</td>
</tr>
<tr>
<td>(mg/L) ac CaCO₃</td>
<td></td>
<td>0.5-1.5</td>
<td>0.5-1.5</td>
</tr>
<tr>
<td>کل جامدات معلق</td>
<td></td>
<td>0.5-1.5</td>
<td>0.5-1.5</td>
</tr>
<tr>
<td>(mg/L) سولفات</td>
<td></td>
<td>0.5-1.5</td>
<td>0.5-1.5</td>
</tr>
</tbody>
</table>

الف: (23)

ب: استاندارد پساب خروجی برای تخلیه به‌منظور پذیرش (سامان حفاظت محیط زیست ایران)
در هر غلظت یوگر کریم فعال کربنیه ولایتی و سایر ملاحظات نظر ملاحظات اقتصادی و کیفیت همبسته خروجی، کاربرد یوگر کریم فعال به مرز 20/3 گرم در لتر جهت بخش اصلی مطالعات انتخاب شد.

![Graph](image_url)

شکل 2: نتایج کاربرد یوگر کریم فعال بر روی حذف COD

**ترسیب به روش struvite**

نتایج ترسیب به روش struvite دفن زباله با نسبت استروموتروپی میانی به أمونیاک توسط متغیر pH شاره معادل 9 در گزارش معیار pH بین 7/4/7/24 در جدول 7/6/7/4 نشان داده شده است. نتایج آزمایشات ترسیب به روش افزایش می‌باشد. در پایان این حذف افزایش pH افزایش می‌باشد. در پایان این

<table>
<thead>
<tr>
<th>pH</th>
<th>Mg (mg/L)</th>
<th>Ca (mg/L)</th>
<th>PO₄-P (mg/L)</th>
<th>NH₃ (mg/L)</th>
<th>TKN (mg/L)</th>
<th>SCOD (mg/L)</th>
<th>TCOD (mg/L)</th>
<th>[NH₃] [Mg][PO₄]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/42</td>
<td>569</td>
<td>9.3</td>
<td>242</td>
<td>266</td>
<td>266</td>
<td>300</td>
<td>5200</td>
<td>شاره خام</td>
</tr>
<tr>
<td>7/33</td>
<td>147</td>
<td>238</td>
<td>244</td>
<td>266</td>
<td>266</td>
<td>300</td>
<td>4115</td>
<td>مرحله اول ترسیب</td>
</tr>
<tr>
<td>7/61</td>
<td>155</td>
<td>232</td>
<td>277</td>
<td>266</td>
<td>266</td>
<td>300</td>
<td>4375</td>
<td>مرحله دوم ترسیب</td>
</tr>
<tr>
<td>7/64</td>
<td>105</td>
<td>293</td>
<td>216</td>
<td>255</td>
<td>255</td>
<td>3518</td>
<td>3933</td>
<td>مرحله سوم ترسیب</td>
</tr>
<tr>
<td>7/62</td>
<td>63</td>
<td>288</td>
<td>186</td>
<td>249</td>
<td>249</td>
<td>3317</td>
<td>3149</td>
<td>مرحله چهارم ترسیب</td>
</tr>
</tbody>
</table>

الف: خروجی مرحله چهارم به عنوان فاصله ورودی مرحله تجزیه زیستی مورد استفاده قرار گرفت

ب: 0/1/0/5

**تعیین دز بینه کریم فعال**

شکل 2 نشان می‌دهد که با افزایش مقدار یوگر کریم فعال، میزان حذف COD افزایش می‌یابد. با همدیده حذف COD در هنگام کاربرد 3/1 گرم بر لتر یوگر کریم فعال ۳۲ درصد (انحراف معیار 9/3/6) یوگر. با توجه به نگرفتار باره حذف
کارایی فرآیند تصفیه بدون کاربرد پودر کربن فعال در شرایط پکسی هیدرولیکی 12 ساعت
در این مطالعات زمان ماند هیدرولیکی می‌باشد به ترتیب متوسط 12 ساعت (بار آلی 2350 گرم COD در روز) افزایش یافته و با کربن فعال تخیلی متغیر در شرایط پکسی، با بند کاربرد پودر کربن فعال مورد بررسی قرار گرفت.

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>شیب‌های خام</th>
<th>ترسب به روش</th>
<th>فشار فعال</th>
<th>فشار خروجی</th>
<th>فشار خروجی</th>
<th>فشار خروجی</th>
<th>فشار خروجی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCOD (mg/L)</td>
<td>3815</td>
<td>3815</td>
<td>3815</td>
<td>3815</td>
<td>3815</td>
<td>3815</td>
<td></td>
</tr>
<tr>
<td>SCOD (mg/L)</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>NH₃ (mg N/L)</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>POT-P (mg/L)</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

افزایش نسبت ترسب به روش تولید اثرات مثبتی در روی جدول 3 تأثیر دارد.

کارایی فرآیند تصفیه بدون کاربرد پودر کربن فعال با آزمایش تصفیه کننده یا مورد بررسی در نسبت ترسب به روش فعال و به ترتیب معادل 0.67 (انحراف معیار ± 0.0186) تا 0.67 (انحراف معیار ± 0.0186) درصد بوده است.

کارایی فرآیند تصفیه با کاربرد پودر کربن فعال
کارایی می‌باشد که در صورت پاک‌سازی مورد بررسی در این مطالعات زمان است که بند کاربرد پودر کربن فعال کربن فعال بررسی شده است.

کارایی فرآیند تصفیه با کاربرد پودر کربن فعال
کارایی می‌باشد که در صورت پاک‌سازی مورد بررسی در این مطالعات زمان است که بند کاربرد پودر کربن فعال کربن فعال بررسی شده است.

کارایی فرآیند تصفیه بدون کاربرد پودر کربن فعال
کارایی می‌باشد که در صورت پاک‌سازی مورد بررسی در این مطالعات زمان است که بند کاربرد پودر کربن فعال کربن فعال بررسی شده است.
جدول 2: نتایج راهبردی راکتور لجن فعال تخلیه مبتنی در زمان ماند هیدرولوژیکی 12 ساعت

<table>
<thead>
<tr>
<th>باراک‌سازی تخلیه مبتنی</th>
<th>ترسبیب به روش struvite شیرابه خام</th>
<th>ترسبیب به روش COD (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طغیان در صد</td>
<td>طغیان در صد</td>
<td>طغیان در صد</td>
</tr>
<tr>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
</tr>
<tr>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
</tr>
<tr>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>باراک‌سازی تخلیه مبتنی</th>
<th>ترسبیب به روش struvite شیرابه خام</th>
<th>ترسبیب به روش COD (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>طغیان در صد</td>
<td>طغیان در صد</td>
<td>طغیان در صد</td>
</tr>
<tr>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
</tr>
<tr>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
</tr>
<tr>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
<td>فازهای مبتنی</td>
</tr>
</tbody>
</table>

بحث و نتیجه گیری

توصیه زیستی مقصود شیرابه خام دفن بهداشتی به دلیل بار آتی بالا و وجود تركیبات سمی مانند فلزات سنگین که بازدارنده رشد توده میکروبی و متابولیسم آن هستند، دارای حذف مطلوبی نمی‌باشد (22). نکته مهم این پروتکس کاربرد ترسبیب به روش این شیمیایی راکتور نسبت به شیمیایی، قدرت حذف فسفر و ارزش بالایی مانند در فاضلاب ورودی به راکتور توصیه زیستی، برای انجام توصیه زیستی کافی بوده و نیاز به افزودن مواد مغذی به راکتور هوشی وجود ندارد (بر اساس تبیین بهره مواد مغذی مورد نیاز در تجزیه زیستی: C/N/P = 100:10:5) .

داده‌های به دست آمده در این مطالعه برای ترسبیب به روش با مطالعات مشابه متطبقت زیادی دارد (25). بنابراین توصیه به روش struvite به راکتور به باراک‌سازی حذف آمونیاک struvite به میزان 89 درصد به عنوان باراک‌سازی به تغییر توصیه قیل از واحدهای توصیه زیستی پیشنهاد شد. دانکوم و همکاران (2007) با استفاده از روش ترسبیب شیمیایی به روش struvite
Seasonal dynamics in leachate hydrochemistry and natural attenuation in surface runoff water from a tropical landfill. Waste Manage. 2009; 29(): 829-838.


Leachate Treatment by Batch Decant Activated Sludge Process and Powdered Activated Carbon Addition

Sahand Jorfi S.1, Jaafarzadeh N.2, *Rezaei Kalantary R.3, Hashempour Y.4

1 Department of Environmental Health Engineering, Tarbiat Modaress University Tehran, Iran
2 Department of Environmental Health, School of Health, Ahwaz Jondishapour University of Medical Sciences, Ahwaz, Iran
3 Department of Environmental Health, School of Health, Iran University of Medical Sciences, Tehran, Iran
4 Department of Environmental Health Master of Science in Ahvaz Jondishapour University of Medical sciences, Ahvaz, Iran

Received 11 Mars 2009; Accepted 19 May 2009

ABSTRACT
Backgrounds and Objectives: Direct biodegradation of landfill leachate is too difficult because of high concentrations of COD and NH3 and also the presence of toxic compounds. The main objective of this study was to application of Struvite precipitation as a pretreatment stage, in order to remove inhibitors of biodegradation before the batch decant activated sludge process with addition of powdered activated carbon (PAC).

Materials and Methods: Struvite precipitated leachate was introduced to a bench scale batch decant activated sludge reactor with hydraulic retention times of 6 and 12 hour. PAC was added to aeration tank directly at the rate of 3.5 g/L.

Results: TCOD, SCOD, NH3 and P removal efficiency with addition of PAC in HRT of 6 h were 90, 87, 98.3 and 94 % respectively and 96, 95, 99.2 and 98.7 % in HRT of 12 h.

Conclusion: According to obtained data from this work, it can be concluded that Struvite precipitation before batch decant activated sludge process and simultaneous addition of PAC is promising technology for leachate treatment and can meet effluent standards for discharge to the receiving waters.

Keywords: Leachate, Biodegradation, Batch decant activated sludge, Powdered activated carbon

*Corresponding Author: roshanak_rezaikalantary@yahoo.com
Tel: +98 21 88779118  Fax: +98 21 88779118