بهینه سازی راکتور زیستی با بستر متحرک (MBBR) با استفاده از روش تاقوچی

نعت الله جعفرزاده حضیری فرد 1، محمد مهدی مربیانی اردکانی 2، رامین بی زاده نوده 3، احمد رضا یزدانپشه

نوع‌شناس: کارشناس ارشد مهندسی محیط زیست، شرکت های صنعتی استان فارس

دریافت: 17/12/1248

چکیده

زمینه و هدف: در سال‌های اخیر کاربرد سیستم‌های راکتورهای زیستی با بستر متحرک در تصفیه‌های فاضلاب‌های شهری و صنعتی توسعه یافته است. آزمایش‌های فیزیکی و شیمیایی این روش را به عنوان یک روش مناسب برای بهینه سازی آب‌سازگاری می‌دانند. این پژوهش با هدف بهینه‌سازی سیستم‌های آب‌سازگاری با روش تاقوچی است (MBBR) یک راکتور بهینه‌سازی‌شده در آب‌سازگاری می‌باشد به‌منظور بهینه‌سازی آب‌سازگاری با روش تاقوچی است (MBBR).

سمواد و روش‌ها: در این پژوهش راه‌اندازی راکتور با کمک روش تاقوچی تصفیه‌خانه فاضلاب‌های شهری و صنعتی انجام گردید. تا این‌جایی که تجربیات و نتایج آب‌سازگاری با روش تاقوچی در آموزش و پرورش، بهینه‌سازی و بهبود این روش در تصفیه‌های فاضلاب در ایران تجربیات و تجربیات مربو بر درآمده و مصرف‌های صنعتی بوده است. این روش مصرف‌های صنعتی و تجربیات بهینه‌سازی آب‌سازگاری با روش تاقوچی است (MBBR) با کمک روش تاقوچی، مورد بررسی قرار گرفته است.

تغییر و تحلیل گردد.

باقی‌های اول: در این پژوهش، مقدار ذخایر COD محلول در زمان راکتورهای 97 درصد و بهبود برازی و بهبود این روش در تصفیه‌های فاضلاب بهینه سازی (MBBR) با کمک روش تاقوچی است (MBBR).

نتیجه‌گیری: به‌منظور بهینه‌سازی ترکیب میزان با استفاده از روش تاقوچی شرایط بهینه و مناسب برای انتخاب راکتورهای کارآمدی که راکتور و افزایش کلیدی: تصفیه بیولوژیکی فاضلاب، طراحی آزمایش ها، تاقوچی، راکتور زیستی با بستر متحرک، نرم‌افزار (MBBR) واقع کی.
مقدمه

هدف تحقیقاتی که در این مقاله پژوهشی بررسی می‌شود، تحقیق در مورد رفتار نشانه‌های آرامش هسته‌ای در برابر فشاری‌های شیمیایی در گونه‌های مختلف از جمله از لحیج طبیعی است.

به‌طور کلی، نتایج این تحقیق نشان می‌دهد که بررسی‌های این مطالعه نشان‌دهندهٔ اهمیت این نشانه‌ها در جستجوی عواملی است که بر روی رفتار نشانه‌های آرامش هسته‌ای در گونه‌های مختلف اثر می‌گذارند.

لینی (پینسازی)، کشتارگاه ها و صنایع شیمیایی موفقیت آمیز در فضاهای از بین رفته است. این امر از نظر جهت تصفیه اخوان هسته‌ای در این صنایع بهره‌مندی می‌دهد. در حیث اخوان هسته‌ای در این صنایع، صنایع مانند محصولٍ جدایی صنایع مانند محصول هسته به عنوان یکی از استانداردهای اصلی در صنایع شیمیایی مطرح می‌شود.

کلید واژه‌ها: جهت تصفیه اخوان هسته‌ای، صنایع شیمیایی، موفقیت آمیز، محصولٍ جدایی صنایع مانند محصول هسته
فاضلاب های گوناگون توسط بسیاری از محققین مورد ارزیابی قرار گرفت است به یک مورد درمانی از آنها یک پزشک، دندان و همکاران دستی کننده فاضلاب مصنوعی COD مختلف مورد بررسی حاوی آنلاین را در ۴ ماه مانند قرار داده‌ها. این مطالعه به‌صورت آزمایش‌گاهی از ازار (ANOVA) قدرت‌شناختی به‌نام مدل پایلاس آنها (برای تحلیل نتایج اعضا به کن. تحلیل واریانس بعد از انجام تحلیل نسبت نتایج بدین به‌طور نوروز برآورد واریانس خطا و اهمیت نسبی هر یک از عوامل انجام می‌شود. نتایج تحلیل واریانس معمولاً به صورت جدولی شامل درجه آزادی هر عامل و خطای ناشی از آن، مجموع معادله واریانس پایین‌تر معنی‌داری بر عهای عامل، و درصد تاثیر عوامل در پایان ارزیابی قرار گرفته. آنها این مطالعه در زمان‌اندازی بلند به یک سه‌شنبه ساده‌تر از روش تاکوچی شاهل انتخاب یک طرح مناسب برای انجام آزمایش‌های یک‌بار بالا توسط مهربانی و همکاران انجام شد. این پژوهش‌ها انجام این آزمایش‌ها با توجه به طراحی آزمایش‌های صورت گرفته در مرحله اول و در مرحله دوم تجربی و تحلیل نتایج است. (۱۳۷۱).

پژوهشگران مختلفی بر روی تجربه زیستی اینگیلکول کار کرده‌اند. به عنوان مثال مطالعه ای بر روی تجربه زیستی مونو اینگیلکول در یک راکتور پویه‌ای بستر متحرک بی‌بار با توسط مردان و همکاران انجام شد. در این پژوهش رویاندان حذف COD برای با ۹۸/۰ درصد در بار آلی COD بر متر مکعب در روز به دست آمد. (۱۳۷۱) که تجزیه فاضلاب به‌صورت میکرووگرام انجام گرفته است. مهاجمان در مطالعه خود میزان مصرف کوئیکیل و روپولیکینول توسط میزان حذف کوئیکیل و زد پولیکینول در محیط‌های آبی را مورد بررسی قرار دادند و موفق به حذف مقدار بیشتری از این ترکیبات در طی آزمایش‌های خود شدند. (۲) و همکاران مطالعه ای بر روی تجربه زیستی مونو، دی و زد اینگیلکول در آب روپولیکینول و در شرایط کنترل شده آزمایشگاهی انجام دادند. آنها نتایج در مدت ۳ روز و با دمای ۲۰ درجه سانتی‌گراد کل مونو اینگیلکول ورودی را در شرایط آزمایشگاهی حفظ نموده بودند ولی با توجه به دیاف معمول روپولیکینول که در حدود ۸ درجه سانتی‌گراد بود تجربه کامل مونو اینگیلکول در مدتی کمتر از ۸ روز ممکن بود. (۱۳۷۱)

عملکرد راکتور زیستی با بستر متحرک در تصفیه زیستی

محمود مهدی مهردانی اردکانی و همکاران

مراجع:

کوئیکیل (MBBR) راکتور پویه‌ای با بستر متحرک

در این مطالعه از دو راکتور زیستی با بستر متحرک هر کدام به حجم ۳۷۵/۰ در مقیاس آزمایشگاهی استفاده شد. راکتورها از جنس پلی اتیلن - پلی‌گلیک‌سیاست به شکل استوانه ای قطر داخلی ۱۳/۵، ارتفاع ۳۰ و ضخامت ۲/۵ سانتی‌متر ساخته شد. همچنین بستر از جنس پلی اتیلن با فشرده گیال بی‌شکل شده‌اند. به این نظر همچنین نتایج با نتایج بدون بستر تهیه گردیده‌های بی‌شکل همانند زیربودار نام تجارت لانه زبودار - ۲۰۰۰ که دارای سطح و وزش‌های پایدار بر اساس بستر ۵۵۰/۰ رد به متر مکعب بود استفاده شد. بستر اینگیلکول در مدتی کمتر از ۸ روز اکسیژن بی‌شکل
پرهیزگار وارد راکتور می‌شود. با توجه به مشکلات کنترل
در کاربردهای این سیستم در مقیاس صنعتی و توزیع
پودن شرایط کاری راکتور به شرایط واقعی راکتور در دمای
معمول انتاق (20-25 سانتی‌گراد) به صورت پوسته مورد بهره
برداری و مطالعه قرار گرفت. نتایج از این سیستم در شکل 1
به نمایش درآمده است.

![Shema](MBBR). بیمار در استفاده در مطالعه

فاضلاب مصنوعی

برای تهیه فاضلاب در این مطالعه، یک محفظه مصنوعی محلول
در آب همزمان با کلکر در مرحله راه اندازی و مونوتیپ کلیکول
ساخت شرکت مک آلمن هدر دو با دو تولیدی توسط
به عنوان نمای منبع کربن مورد استفاده می‌کرده‌اند. همچنین
در مرحجه بارگذاری، همان‌طور که در مقدار برای
کل هر بار با 1/5/100 تهیه 1 استفاده شد که این مقدار برای
مطالعه فاضلاب با میزان مورد برای با 500 میلی گرم بر لیتر
می‌باشد.

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>(mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgSO₄</td>
<td>0.12</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.8</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>0.12</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>0.12</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>37/14</td>
</tr>
<tr>
<td>COD</td>
<td>500</td>
</tr>
</tbody>
</table>

نگاه کنید:
امتحانات عنوان: نمونه از مطالعات می‌باشد.

راکتور وارد می‌شود با این کار محدودیت و کم‌کنش اکسیژن محلول وجود نیامده در هر یک از راه‌اندازی‌ها (موتور ایالیت گلیکوکول) دیده می‌شود. pH و میزان COD در شرایط مدار سطحی داده شده می‌باشد. نرخ ترکیبی نیز در شرایط مدار سطحی داده شده می‌باشد. تغییر یافته که شامل میزان COD و pH عوامل می‌باشد. در این مطالعه بود که اکسیژن محلول به کار گرفته C/N برای در این مطالعه دقتی باید رسانیده شود. سپس pH برای 30 روز تا شهریور میزان گلیکول به عنوان تا میزان مورد استفاده میکروکاپسیم‌ها بهره بوده شد. سپس از این مراحل، بارگذاری آلت دیگر در طول ایجاد شد. قطعه 1000، 2000 و 3000 میلی‌گرم برای 2/3 تایه ناگه داشته شد. این pH این مدت میزان pH از گذشته 20 نمونه COD وارد شده به سیستم ناشی از مواد اولیه گلیکول به عنوان تا میزان مورد استفاده میکروکاپسیم‌ها بهره بوده و به تعمیراتی چنین در راه‌اندازی نیز توسط مراحل انجام داده شد. نیز در نهایت میانگین تا نپیوند آزمایش‌ها در شرایط پایداری با قدرت به میزان ناتوی آزمایش‌ها با Qualitek-4 (w32b) و Qualitek-4 (w32b) نرم افزار به مقیاس طراحی آزمایش‌های نرم افزار بررسی شدند. نرم افزار Nutek, Inc توسط شرکت طراحی و روانه بازار شد. نرم افزار مدکور تحت ویدئو و نسخه 7/5 داده (محصول 1991) و نهایاً قادر به طراحی و آنالیز آزمایش‌های به‌ویژه سازی بیشتر تاکوگیچی می‌باشد.

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>pH</th>
<th>COD</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄Cl</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>CO(NH)₂</td>
<td>6</td>
<td>200</td>
</tr>
<tr>
<td>NaNO₃</td>
<td>8</td>
<td>300</td>
</tr>
</tbody>
</table>

جدول 2: عوامل مورد بررسی در بهینه سازی و عمل مواد مختلف آنها

<table>
<thead>
<tr>
<th>پایین (1)</th>
<th>متوسط (2)</th>
<th>بالا (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>2000</td>
<td>200</td>
</tr>
<tr>
<td>(mg/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ورودی</td>
<td>مورد</td>
<td>COD</td>
</tr>
<tr>
<td></td>
<td>درصد شری</td>
<td></td>
</tr>
</tbody>
</table>
آزمایش‌های طراحی شده به صورت یک جدول با 9 آزمایش (Iy) در جدول 3 ارایه شده است. در روش تاکوچی برای تحلیل آماری دقت ترین تکرار یک تابع بایس (S) به اثرات ناشی از خطا (N) تعیین نشده است. به همین دلیل این پاسخ جدید در تحلیل آماری نسبت به شکل اولیه پاسخ مقایسه‌بردارگی اثرات ناشی از هر عامل اصلی با اثرات ناشی از عوامل خطا و اغتشاشات در آناداره کاملاً است. همانند نتایج تحقیق مطرح شده بر اساس نتایج آزمایشات دقیق به تاثیر واقعی عوامل بر سیستم خواهد شد (15). نتیجه محسوبه نسبت S/N بسته به این که هدف چه نوع پنهانی سازی داشته باشد، متفاوت خواهد بود. از آنجا که در مقاله حذف متوسط خون اثنل کلیول (ر) به صورت مداوم به صورت معادله 1 محاسبه می‌گردد.

\[
S/N = \frac{-10 \log \left(\frac{1}{y_1^2} + \frac{1}{y_2^2} + \ldots + \frac{1}{y_n^2} \right)}{n}
\]

برای این معادله، مقدار پاسخ انداده‌گری شده برای هر آزمایش در هر آزمایش، S نتیجه اکتاسیون آزمایش (2) در اندازه‌گیری با 20 میلی‌گرم پروتئین در پایان مراحل پاسخ انداده و سازگاری میزانCOD و نتیجه سیستم COD را انداده و سازگاری میزانCOD و نتیجه سیستم COD را تعیین کرده‌اند. میزانکلیول در آزمایش تعیین می‌گردد و باید بر اساس 900 میلی‌گرم در لیتر و نتیجه میکروکاتیویسم‌ها مولولایین کلیولی بود. آزمایش تعیین میزان اکتاسیون خواهی شیمیایی میان خروجی از راکتور، نشان‌دهنده حذف مالول COD در بهترین شرایط به 97 درصد بود. در شرایت 2 روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی لابراتوری در حدود 97 درصد بود. دو روند باردی خروجی حذف مالول COD نسبت به زمان اولیه شده است. با توجه به شکل 2 از روز بسته تنا منبع در محدوده‌گران کلیولی L4)”
طرح آزمایش ها
پس از سازگارسازی میکروگانیسم ها، برای بررسی تأثیر عوامل و تعیین شرایط بهینه میکروگانیسم ها آزمایش های دیگری انجام شد. آزمایش های طراحی شده به صورت یک چهارم چهارم (L9) در چهار شماره 3 ارایه شده است. با توجه به استفاده از روش S/N ناگوچی در

جدول 1: جدول آزمایش های طراحی شده به روش ناگوچی و نتایج حاصل از آن

<table>
<thead>
<tr>
<th>S/N</th>
<th>درصد حذف موردنظر</th>
<th>میزان شماره آزمایش</th>
<th>عوامل مورد بررسی در بهینه سازی راکتور</th>
<th>pH</th>
<th>نور منبع نیترژن</th>
<th>غلتقم منبع کربن</th>
<th>RAktor 1</th>
<th>RAktor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1/2</td>
<td>70/6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/1/2</td>
<td>70/6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/8/2</td>
<td>69/3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/8/2</td>
<td>69/3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8/2</td>
<td>69/3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8/2</td>
<td>69/3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8/2</td>
<td>69/3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8/2</td>
<td>69/3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
نمونه های میزان
کربن
COD و رودی
(غلظت میزان کربن)
در این مطالعه، در سه بارگذاری با
COD های ربار با 1000، 2000 و 3000 میلی گرم بر لیتر به
عنوان بهترین مقدار معرفی شد. Jianlong و همکارانش (200) نیز در پژوهشی در زمینه تصفیه فاضلاب در راکتور زیستی
با راکتور انجام شد. همان
طور که در شکل3 مشاهده می‌گردد، با افزایش میزان
COD ورودی به راکتور، نسبت
S/N که شاخصی از پاسخ سیستم به
تغییرات غلظت مواد کیفیتی
گلیکول است، کاهش می‌یابد. برای
تحلیل های صورت گرفته در
COD با 1000 میلی گرم به
لیتر بهرین میزان سیر پایه
شده است. این میزان به
عنوان مقادیر بهینه گزارش می‌گردد. با افزایش میزان مواد
گلیکول (میزان کربن) در محیط
و در تیپه ایفاوش بار آلی
از
تیپ مشکل مواد غذایی
و تیپه عناوین کربن برای
سوختگی سازوکاری کاسته می‌شود.
پس از آن نیز تیپه به
محدود کننده، ضعیف باشد و
نمی‌تواند سیستم شده نهایتاً
منجر به کاهش رشد مشکل
ماگنیته بود. در این مطالعه
با
توجه به روش مناسب مشکل
میکروگانیسم‌ها در غلظت
پایین مواد

<table>
<thead>
<tr>
<th>پاسخ S/N</th>
<th>تأثیر عوامل بر سیستم</th>
</tr>
</thead>
<tbody>
<tr>
<td>نرخ های S/N</td>
<td>اصلی برای هر سطح از پارامترها</td>
</tr>
<tr>
<td>عوامل در نظر گرفته شده</td>
<td>pH</td>
</tr>
<tr>
<td>نوع منبع نیتروژن</td>
<td>(mg/L)</td>
</tr>
<tr>
<td>COD ورودی</td>
<td>درصد شبیه فاضلاب ورودی</td>
</tr>
<tr>
<td>38/244</td>
<td>32/809</td>
</tr>
<tr>
<td>37/244</td>
<td>32/911</td>
</tr>
<tr>
<td>33/123</td>
<td>35/294</td>
</tr>
<tr>
<td>39/933</td>
<td>37/424</td>
</tr>
</tbody>
</table>

شکل 3: تأثیر عوامل (غلظت میزان کربن) به راکتور بر درصد

d(1)×10^{-4}

\begin{align*}
\text{S/N} & = \frac{1}{\sqrt{\text{COD}}} \\
\text{COD} & = \frac{1}{\text{S/N}}
\end{align*}

\begin{align*}
\text{S/N} & = \frac{1}{\sqrt{\text{COD}}} \\
\text{COD} & = \frac{1}{\text{S/N}}
\end{align*}
محمدا･ مهدی مهریانی اردکانی و همکاران

یون های کلسیم، نیترایل، سدیم، تناسقی توسط پیدایش انشار در غشاء سلولی صورت پذیرد. به دلیل از ترکیبات فوک برای
رشد سلول ها ضروری می باشد. افزایش و یا کاهش
غشته در این یون ها در مورد منجر به تغییر میزان
های الکترلیکی آب (غشته غشته شوری) گردید. این امر
نیز تأثیر مثبتی بر روی توانایی جذب این ترکیبات توسط
سولول ها دارد. از سوی دیگر افزایش یا حذف میزان
می تواند موجب خروج آب از غشاء سلولی به سبب پدیده
استم جریه و رشد سلول را می سازد. از این نتیجه
شوری فاضلاب بر درصد حذف مواد غذایی گیاه یا نان
داده شده است. همانطور که ملاحظه می شود بیشترین نسبت
در سطح دوم و میزان شوری 5% اتفاق افتد است.

معلوماً پساب صنایع نفت و گاز مانند صنایع پتروشیمی و با
فاضلاب تولیدی در فرودگاه ها به علت احتمال تراکم با
پای اتانیل گیاهی با غشته های با ناشی از ضایع مصرفی
در مواد چربی مهاجر در باشند. باید بالای نیز دارند.
(21). بنابراین میکروگانیسم هایی که گزارش شده در تصفیه این
کشور یا فاضلاب هایی یا باید برای حفظ سلول بررسی
قرار گیرد. شوری بالای منجر به افزایش فشار اسمی، گردیده
و بر روی ورود و خروج برشی مواد از سلول تداوم ایجاد
می نماید. شکل این ماهی در سطح 5% می شود.

تفاوت چندانی در کارایی میکروگانیسم در شوری های
1/7 و 5/2 مشاهده نمی شود. بنابراین من میکروگانیسم ها
 قادر به ادامه فعالیت در شوری های بالای نیز می باشند.
همکارانت با مطالعات خود موفق به پایین مجله ی کارایی میکروگانیسم
نفت خوار اضافه که توانایی زیستن در شوری های داکتر 6/1
فداشته می کنند، میکروگانیسم های این شرکت توسط
میکروگانیسم های مورد استفاده از این مطالعات، توان
حمل شوری مشابهی را دارا بودند. (22). حتی با توجه به نژادی
کارایی میکروگانیسم های مورد استفاده در این مطالعات می توان
که میکروگانیسم های سازگار شده در این مطالعه توان تحمیل
شوری بیشتری را نسبت به میکروگانیسم های یافته شده در
مطالعه Li و همکاران دارند.

شکل 1: تأثیر فاضلاب بر درصد حذف مواد غذایی گیاهی

تأثیر شوری فاضلاب ورودی به راکتور
ورود و خروج بخشی از ترکیبات مورد نیاز سلول (مانند

نمونه سنجی میکروگانیسم ها در بیشتر مطالعات در
محدوده حدودی می باشد (11). شکل 3 نسبت S/N را به عنوان

شناختی از پاسخ سیستم به تغییرات مقدار pH و تأثیر آن بر
درصد حذف مواد غذایی گیاهی نشان می دهد. در واقع

میکروگانیسم های سازگار شده در این مطالعات از میکروگانیسم های یافته شده در

سازگاری با فشار اسمی، گردیده و بر روی ورود و خروج برشی مواد از سلول تداوم

می نماید. شکل این ماهی در سطح 5% می شود.

ردیابی شوری فاضلاب دوم به سوم منجر به افزایش کارایی سیستم با همان میزان پاسخ در روش کلاسیک

می گردد. در این نمونه با افزایش pH مقدار پاسخ

کاهش یافته و با افزایش مقدار pH به همراه پاسخ افزایش می یابد. این نتایج واقعی که pH از 7 به 8 تغییر می کند

پیشرفت نشان می دهد.
بهینه سازی راکتور زیستی با...

تاثیر نوع نیتروژن در فاضلاب بر درصد حذف عوامل سرمازدهه در نظر گرفته شده و نشان داده شده است. نیتروژن

انیلین-گلیکول در شکل 6 سه روش همچون بازده، حذف مولکول‌های گلیکول و تحلیل واریانس تجربه

در این محل‌های موثرترین جدول (ANOVA) تحلیل

آماری گردیده‌اند. هدف از تحلیل آنها به دست آوردن نسبت

واریانس است. نسبت به واریانس کل می‌باشد (7).

جدول 6 تحلیل واریانس آنها توانایی را نشان می‌دهد. از

آنچه که نشان دهنده میزان درجه آزادی برای مقایسه

لمبdkه شده‌اند، میزان درجه آزادی برای مقایسه مقادیر باسخ در

سه مقدار از هر عمل برای دو می‌باشد و کل درجه آزادی

بره‌های محاسبه‌گرده. با توجه به کاهش درجه آزادی به دست آمده، نسبت

فکتور نسبت به دورا (Vc) محاسبه می‌گردد. با توجه به

اینکه درجه آزادی حساس به تغییرات بسیار بوده و واریانس

خطا از تفسیر مجموع‌برای درجه آزادی به دست آمده،

بنابراین نتایج گروهی خطا در این آزمایش غیر ممکن است و

در نتیجه مقدار F محاسبه نسبت غیر ممکن است (27). در سه

پارامترهای آماری مختلف در جدول 6، درصد تاثیر هر عامل بر پاسخ

فهوم روش‌های دارد. برای این پارامتر به کمک سایر پارامترهای

آماری در این جدول محاسبه شده است و درصد تاثیر عوامل

مختلف بر تجزیه مولکول‌های گلیکول در محدوده سطوح

در نظر گرفته شده حساسیت می‌دهد که همه عوامل کم و بیش

زا سطح شرایط نیتروژن می‌باشد.

نتایج درصد شرایط نیتروژن...
دیاری اهمیت نسبی برای تایید بر پاسخ می‌باشد. همانطور که مشخص است موثرترین عامل به ترتیب گلظت

<table>
<thead>
<tr>
<th>متغیر</th>
<th>(DOF)</th>
<th>مجموع مربعات</th>
<th>درصد تأثیر فاکتور</th>
<th>درصد تأثیر هر فاکتور</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>2</td>
<td>20,943</td>
<td>10,471</td>
<td>49,59%</td>
</tr>
<tr>
<td>نوع منبع تیترورون</td>
<td>2</td>
<td>10,286</td>
<td>532</td>
<td>14,99%</td>
</tr>
<tr>
<td>گلظت</td>
<td>2</td>
<td>4,343</td>
<td>2,2111</td>
<td>33,01%</td>
</tr>
<tr>
<td>درصد شوری</td>
<td>2</td>
<td>8,791</td>
<td>8,791</td>
<td>22,43%</td>
</tr>
<tr>
<td>Other error</td>
<td>0</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>نتیجه گیری</td>
<td>8</td>
<td>70,945</td>
<td>100</td>
<td>100%</td>
</tr>
</tbody>
</table>

شیب یک بهنی نسبی
ANOVA
با توجه به شکل‌های تایید عوامل و نتایج جدول 7 نیروی مایع به رسمیت برای خاکی رشد میکروگالبسماها و در نتیجه بیشترین درصد گلظت موتور انیلین گلیکول را نسبت به دو سطح دیگر هر عامل به دست آورد. جدول 7 شیب یک بهنی نسبی تغییر شده در روش ناگوچی را نشان می‌دهد. همانطور که ملاحظه می‌شود عوامل باید در بالاترین سطح خود قرار گیرد تا بهترین پاسخ به دست آید. به بیان دیگر شیب یک بهنی عوامل در محدوده سطح اخاب شده شامل موثر شد و روش Nاگوچی COD ورودی برای 1000 میلی گرم در pH 8.8 برای 68 نیروی 5/6 و در نتایج پایدار آمونیوم به عنوان منبع تایید نبوده منبع باشد.

<table>
<thead>
<tr>
<th>عامل</th>
<th>بهترین سطح</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7,86</td>
</tr>
<tr>
<td>الکل</td>
<td>0,16</td>
</tr>
<tr>
<td>COD</td>
<td>0,16</td>
</tr>
</tbody>
</table>

جدول 7 بیشتر بهینه برای استانداردهای حداکثر رشد میکروگالبسماها

Optimization of Moving Bed Biofilm Reactor Using Taguchi Method

1 Department of Environmental Health, School of Health, Ahwaz Jondishapour University of Medical Sciences, Ahwaz, Iran
2 Environmental Engineer of Industrial Estates Co.
3 Department of Environmental Health, School of Public Health and Research Health Institute, Tehran University of Medical Sciences, School of Health, Tehran, Iran
4 Department of Environmental Health, School of Health, Tehran Shahid Beheshti University of Medical Sciences, Tehran, Iran

Received 5 March 2009; Accepted 5 May 2009

ABSTRACT

Backgrounds and Objectives: in recent years, mobile bed biological reactors have been used progressively for municipal and industrial wastewaters treatment. Dissented experiment is a trial that significant changes will accrue for influent variables in the process, and generally used for identification of the effective factors and optimization of the process. The scope of this study was determination of the optimized conditions for the MBBR process by using of Taguchi method.

Materials and Methods: Reactor start up was done by using of the recycled activated sludge from Ahwaz wastewater treatment plant. After that and passing the acclimation period, with hydraulic residence time equal to 9 hours matched for 1000, 2000 and 3000 mg/l based on COD respectively, for optimization determination of the acclimated microbial growth, the variables change (pH, nitrogen source, chemical oxygen demand and salinity) were determined in 9 steps, and all of the results were analyzed by Qualitek-4 (w32b).

Results: In this study, organic load removal based on COD was 97% and best optimized condition for MBBR were (inf. COD=1000 mg/l, pH= 8, salinity = 5% and the Nitrogen source= NH4CL).

Conclusion: Based on our finding, we may conclude that Taguchi method is on of the appropriate procedure in determination the optimized condition for increasing removal efficiency of MBBR.

Keywords: biological wastewater treatment, Taguchi, Moving bed biofilm reactors, Experimental design, Qualitek-4 (w32b) software

*Corresponding Author: m.m.mehrabani@gmail.com
Tel: +98 9358562018 Fax: +98 711 8250884