بررسی تأثیر آلومینیای فعال بر غلظت فلوراید موجود در آب و تعیین ایزوترم ها و سینتیک جذب

محمد تقی صمدمی، رفیق نوروزی، سید عزیزان، یوسف دادبان شهامت، منصور ضرابی

dr.norozi@yahoo.com

نویسندگان: کرمان، بلور همگان، ابتدا ناحیه سنگن کل، دانشگاه پزشکی و بهداشت

دریافت: 24/13/88
پذیرش: 88/89

چکیده

زنده و مفید: غلظت فلوراید در آب آشامیدنی به دلیل اثرات مفید و ضرر آن بر روی سلامت انسان بسیار مورد توجه قرار گرفته است. هدف از این بررسی تأثیر آلومینیای فعال بر کارایی حذف فلوراید از آب آشامیدنی است.

روش بررسی: آزمایش ها در سیستم نایبیسی و با تغییر فاکتورهای موثر مانند pH اولیه فلوراید، کمتر، کمتر و از آزمایشات فعال (1/10، 1/2، 1/3 کمتر برای) مورد بررسی قرار گرفت. همچنین این تحقیق با آزمایشات فرد و فردین و داده های سینتیک با مدل های درجه یک کاذب، درجه دو کاذب، درجه دو کاذب تغییر شکل یافته، تطبیق داده شده است.

بیانه‌ها: نتایج نشان داد که کاهش pH محلول کارایی حذف کاهش می‌یابد و بهینه در محدوده 5 تا 7 بوده است. همچنین کاهش pH محلول کارایی حذف pH فلوراید با افزایش جرم ماده جاذب و کاهش غلظت اولیه فلوراید اندازه گرفته است. ضریب های غلظت فلوراید با مدل لانگمیر (\(R^2 = 0.999\)) همراه است. سیستم کاذب فلوراید بر روی آلومینیای فعال به وسیله مدل درجه دو کاذب بهتر توصیف شد (\(R^2 = 0.981\)).

نتیجه‌گیری: غلظت آلومینیای فعال بر کاهش غلظت فلوراید در آب مورد است. حذف بالای فلوراید در آزمایشات نایبیسی در محصول مشاهده شد. زیرا هیچ بیون فلوراید آزادی در محلول وجود ندارد که ممکن است ناشی از فعالیت‌های علی‌اکثرها باعث تغییر شکل آلبومین باشد. مدل سینتیک به طور مناسب رفتار حذف فلوراید به وسیله جذب سطحی آلومینیای فعال در سیستم نایبیسی را توصیف کرده است.

واژگان کلیدی: آلومینیای فعال، فلوراید، آب، جذب

1- دکتر ایزدی برداری اینداشت محیط دانشکده بهداشت محیط دانشگاه علوم پزشکی کلستان
2- دکتر ایرانی در اینداشت محیط دانشکده بهداشت محیط دانشگاه علوم پزشکی کلستان
3- دکتر ایرانی در اینداشت محیط دانشکده بهداشت محیط دانشگاه علوم پزشکی کلستان
4- دکتر ایرانی در اینداشت محیط دانشکده بهداشت محیط دانشگاه علوم پزشکی کلستان
5- دکتر ایرانی در اینداشت محیط دانشکده بهداشت محیط دانشگاه علوم پزشکی کلستان

Downloaded from ijhe.tums.ac.ir at 16:33 IRST on Tuesday December 24th 2019
مقدمه
فلوئور از عناصر بوستنی زمین است که در تعدادی از مواد معدنی و سنگ‌ها و موجودات زمینی اند. این املایی و بودن فلوراید با منابع آب شامل با ترکیبات معدنی حاوی فلوراید و تخیل فلوراید صنعتی حاصل از تولید نیمه رسانی، شبیه و غیره است. (۲۳) این سازمان بله‌داری جهانی دانکرک، گزارشی از فلوراید در آب آشامیدنی را حدود ۱/۵ میلی گرم بر لیتر تعیین کرده است. (۲۱) گزارش از فلوراید در آب آشامیدنی در مقایسه کمتر از این آشغالی است باعث درخواست از دندان و در مقایسه با نتایج استاندارد باعث بررسی پیوسته دندان و در مقایسه با نتایج استاندارد باعث فلوروزیس استخوانی و دندانی می‌شود. فلوروزیس موجب ضعیف شدن سخت‌تر دندان و اسکلر آن می‌شود و رشد دندان و رشد کنار گذش سازنده و در مواد شناسی‌در باعث یاری‌زیر کرده انده که اثرات طولانی مدت مواجه با فلوراید و تجرب آن فقط باعث خطرات اسکلری و دندانی پایدار باید باعث می‌گردد که می‌تواند موجب تغییر ساختار DNA و از بین رفتن فلوئوراید شود. با لحاظ می‌توان فلوراید

۱. تحلیل انتخاب انواع شیمیایی و دارای موارد استفاده برای حذف فلوراید بوده و فلوراید و فلوراید مبتنی بر شیمیایی

۲. استخوانی و فلوراید وجود در آب آشامیدنی بایستی از حد مجاز است. از جمله در استان‌های گزارشی‌های خدمات بهداشتی‌پزشکی در استان‌های کرمان، خراسان شمالی، خراسان جنوبی، زابل، زاهدان و ... (۲۱) این تحقیق بررسی تأثیر آلومینیوم فعال در محیط‌های آبی به وجود آمده‌است.

۳. نشان داده شده است. (۴) مسیر آلومینیوم فعال در محیط‌های آبی و سیستم‌های مربوط به خواص آن.

![شکل ۱: شکل گیری گونه‌های فلوراید به وسیله آلومینیوم فعال در IH]
جاذب و غلظت اولیه فلوراید مورد بررسی قرار گرفته است. همچنین دو نوع مدل ایزوپترک جذب شاب ایزوپترک فروندیج و ایزوپترک لامگر برای تعیین نوع مدل فلوراید جذب فلوراید بر روی آلومینیای فعال و همچنین سپتیک جذب مورد بررسی قرار گرفته است.

مواد و روش‌ها
کلیه مواد شیمیایی مورد استفاده در این پژوهش از شرکت مرک (آلمان) تهیه گردید. در این تحقیق محلول استوک مورد استفاده با حل کردن ماده سدیم فلوراید در آب بدون یون تهیه گردید و سپس غلظت های مورد نظر با استفاده از محلول استوک و رقیق کردن آن ساخته شد. هجته تهیه از محلول یک نرم‌ال اسید سولفوریک و سود استفاده گردید. آلومینیای فعال به عنوان جذب با الک مش سیستم باز دند گردید. آلومینیای فعال به صورت تکیه و با تغییر pH به تراپوسیس و مقدار pH (7.5 و 9). زمان نسبت (30، 90 و 120 دقیقه) غلظت فلوراید (0.1، 0.2، 0.4 و 0.6 میلی‌گرم بر لیتر)، ذبیح آلومینیای فعال (0.6 میلی‌گرم بر لیتر) انتخاب شده. تغییرات pH در حد اکثر 0.5. تا 0.3 گرم بر لیتر) صورت گرفت. هم‌آزمایی های در حالت تراپوسیس در شرایط دارای محیط 350 میلی‌لیتر انجام شده است. به منظور حصول اطمینان از ثبات حاصل از کلیه آزمایش‌ها سه بار تکرار گردید و از میان نتایج مقادیر اندازه‌گیری شده به عنوان غلظت مورد سنجش استفاده گردید.

باقا ماده فلوراید به روش اسپکترونور در حداکثر طول موج 1720/ناتومتر خوانده شد (12). برای تعیین مدل ایزوپترک های جذب شاب ایزوپترک فروندیج و لامگر، آزمایش‌های گردید با نظر گرفتن غلظت های مشخصی از یون فلوراید (0.20، 0.40 و 0.60 میلی‌گرم بر لیتر) در شرایط pH=7، 7.5، 8.3 و 0.60 میلی‌گرم بر لیتر و زمان ماند 48 ساعت صورت گرفت. در این داده 200 میلی‌لیتر از نمونه‌های حاوی غلظت مشخصی از یون فلوراید به داشت با برش از جرم 350 میلی‌لیتر انتقال داده شد و سپس مقدار 0.15 گرم بر لیتر از آلومینیای فعال به نموسه‌های موجود آزاده گردید. از دسته‌گاه همزمان با دور 125 rpm برای اختلال نمونه‌ها در حین

![شکل 2: نتایج ماده جاذب برکار آوری حذف فلوراید (غلظت اولیه pH=7، فلوراید=0.6 میلی‌گرم بر لیتر) دمای 25 درجه سانتی‌گراد](https://example.com/figure2.png)
ب. نتایج حاصل از تغییرات غلظت اولیه فلوراید pH=7 در تریب‌های اولیه فلوراید بر کارآی حذف آن در 8/4 به نشان داده شده است. نتایج حاصل از آن این است که با افزایش غلظت اولیه فلوراید کارآیی حذف آن کاهش می‌یابد. بر اساس شکل 2 مشخص گردید که با افزایش غلظت فلوراید از 5/0 به 8/4 میلی گرم بر لیتر کارآیی حذف آن از 0/87 به 0/25 درجه سانتی‌گراد یافته است.

د. ایزوترم های جذب

ایزوترم‌های جذب به منظور تعریف جرم جذب شده از ماده جذب شونده به ازای واحد جرم ماده جاذب استفاده می‌شوند. مدل‌های ایزوترمی فرودنلیج (Freundlich) و (Langmuir) به طور گسترده‌تری مورد استفاده قرار می‌گیرند. در این مطالعه از مدل‌های ایزوترمی فرودنلیج (Langmuir) و لاگنلیج (Freundlich) برای رسم داده‌های جذب استفاده گردید (۱۳).

ج. نتایج حاصل از تغییرات pH بر کارآیی حذف فلورور

شکل 4 نشان می‌دهد که کارآیی حذف فلورور با کاهش افزایش می‌یابد. بر اساس این نتایج مشخص گردید که کارآیی pH=7

 shuffled from ijhe.tums.ac.ir at 16:33 IRST on Tuesday December 24th 2019
قیمه نرورزي و همكاران

شکل 6: ایزوتروم مدل لانگمیر (لغزش آلومینیای فعال: 4/2 گرم بر لیتر، لغزش اولیه فلوراید: 2 میلی گرم بر لیتر، دما: 25 درجه سانتی‌گراد، pH = 7)

جدول 1: پارامترهای مدل های ایزوترومی مورد استفاده

<table>
<thead>
<tr>
<th>مدل</th>
<th>n</th>
<th>R²</th>
<th>Qm(mg/g)</th>
<th>b(L/mg)</th>
<th>Kf</th>
</tr>
</thead>
<tbody>
<tr>
<td>لاغمیر</td>
<td>6/212</td>
<td>0/9525</td>
<td></td>
<td></td>
<td>7/12</td>
</tr>
<tr>
<td>مدل جدپیده</td>
<td>6/989</td>
<td>0/994</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فروندلیج</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dq/dt = k(qe - qt)

معادله شماره 7 مسیرع تابث (g/mg min) K، با انگز ال گربی از معادله V در لحظه t = q = q، در 1 = q، و با این مقادیر در

معادله شماره 6 زیر به دست می‌آید:

t/q = 1/k.q + 1/7.q.x.t

علی ایزگرام نسبت نتیجه مشخص کنید.

درجه دو کاشف نگرفت شکل یافت که به صورت تجربی توسط Pseudo- first order معادله شماره 8. Al-Dury و Yang

و یکی بیشتر به صورت زیر به دست آمده (14).

dq/dt = km
q = k(qe - qt)

با گرفتن لگاریتم از معادله 9 معادله 10 به دست می‌آید:

Ln(1 - q/qa) + q/qa = -km.t

با توجه به مطلوب ذکر شد، ضریب همستگی R به وسیله

مقدار داده های جمع آوری شده با مدل های سینتک توابین

مطالعه روابط سینتکی

وازده جذب در مطالعات سینتکی خطي است. سرعت واکنش

شیمیایی به وسیله سینتکی شیمیایی بیان می‌شود (12).

اغلب مدل های سینتکی برای جذب سرعت های درجه یک کاشف، درجه یک کاشف، درجه دو کاشف تغییر شکل یافته

هم‌ست (13).

درجه یک کاشف به صورت زیر تعریف pseudo- first order مدل سینتکی

معادله شماره 5

Dq/dt = k(qe - qt)

مدافع جذب به ترتیب در نقطه تعادل و در زمان

بیشتر از نظر تئوری توسط عزیزان Al-Dury و Yang

معادله شماره 9

Log(1 - q/qa) = - k/3.3 x t

درجه دو کاشف به صورت زیر pseudo- second order

مدل سینتکی تعریف می‌شود
پورسی تاپیلیومیات فعال...

پهلو

می شود. با توجه به ضریب همیستگی

\[R' \]

سیستمی جذب فلوراید بر روی آلومینیا فعال را اهداف تعریف مدل سیستمی در جدول 2 نشان داده شده است.

![نگارش 1](shape1.png)

![نگارش 2](shape2.png)

![نگارش 3](shape3.png)

#جدول 2: پارامترهای مدل های سیستمی داده های به دست آمده

<table>
<thead>
<tr>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(Q_0)</th>
<th>(R')</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.6681</td>
<td>0.997</td>
<td>درجه اول کاذب</td>
</tr>
<tr>
<td>0.24</td>
<td></td>
<td>0.13</td>
<td>0.993</td>
<td>درجه دوم کاذب</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.64</td>
<td>0.959</td>
<td>درجه اول کاذب نیبر شکل یافته</td>
</tr>
</tbody>
</table>

بحث و نتیجه گیری

جدب فلوراید توسط آلومینیا فعال تحت تأثیر تغییرات pH قرار دارد. زیرا یک سری فعل و افعال داخیل بین مساحت آلومینیا فعال و گونه های فلوراید غلیب در محلول مورد بررسی قرار گرفته است.

\[pH \]

در محلول غلیب است و تقرباً بیان های فلوراید آزاد در محلول حضور نسیم یاد آمیز 8 و های pH بالا رد

![نگارش 4](shape4.png)
Fluoride Removal: Studies and Applications

Survey Impact of Activated Alumina in Fluoride Concentration Present in Water and Appointment Adsorption Isotherm and Kinetics

Samadi M.T.¹, *Nourozi R.², Azizian S.², Dadban Shahamat Y.³, Zarabi M.¹

¹Department of Environmental Health Engineering, School of Public Health Hamadan University of Medical Sciences, Hamadan, Iran
²Department of Environmental Health Engineering, Golestan University of Medical Sciences, Golestan, Iran
³Department of Chemistry faculty, Buali Sina University, Hamadan, Iran

Received 4 July 2009; Accepted 1 October 2009

ABSTRACT
Backgrounds and Objectives: Determination of Fluoride in drinking water has received increasing interest, due to its beneficial and detrimental effects on health. The aim of this research is investigation of Effect of activated alumina in fluoride concentration reduction in drinking water.

Materials and Methods: Experiment in batch system and with change effective parameters such as pH(5, 7, 9), equilibration time (30, 60, 90, 120 minute), initial fluoride concentration(1.4, 2, 2.4 mg/l) and activated Alumina dosage (0.1, 0.2, 0.3 gr/l) was investigated. Also found data of this research were fitted with Langmuir and Freundlich models, kinetic data with pseudo- first order, pseudo- second order and modified pseudo-first order models.

Results: The results showed that with increasing of pH of solution, removal efficiency was decreased and optimum pH was found to be in the range of 5 to 7. Also removal efficiency of fluoride was increased with increasing of adsorbent dosage and decreasing of initial concentration of fluoride. Adsorption isotherm data show that the fluoride sorption followed the Langmuir model ($r^2=0.98$). Kinetics of sorption of fluoride onto Activated alumina was well described by pseudo- second order model.

Conclusion: The concentration of Activated Alumina had significant effect on the reduction of fluoride ions concentration in water. The higher fluoride removals were observed for batch experiments at pH=5 because no free fluoride ion is present in the solutions, and it could be caused by electrostatic interactions between the surface of alumina and the dominant fluoride species in solution. The kinetic model can adequately describe the removal behaviors of fluoride ion by alumina adsorption in the batch system.

Key word: Activated Alumina, Fluoride, Water, Adsorption

*Corresponding Author: dr.norozi@yahoo.com
Tel: +98 171 4421651 Fax: +98 171 4423630