ارزیابی اثر آب سردکن های متناول بر روی کیفیت آب آشامیدنی

عیب طاهره، مریم دستجردی، مریم حاتم زاده، کیور حسن زاده، فریبا فرمانی نیرین، مهناز نیک آنی

نویسنده: منصور اصفهانی، دانشگاه علوم پزشکی اصفهان، دانشکده بهداشت. گروه مهندسی بهداشت مهیج

چکیده

زمینه و هدف: کیفیت آب تقسیم‌بندی شده ممکن است قبل از مصرف تحت تأثیر خطوط انتقال آب، مانند ذخیره و دستگاه‌های ضمن شده بر روی خطوط کیفیت دستگاه‌های آب سردکن در حال حاضر در مورد سلول‌های اصلی در حال حاضر، به دلیل محدودیت داشتن منابع مصرف و استفاده وجود ممکن است باقلای بر روی کیفیت آب آشامیدنی تأثیر گذشته بر روی کیفیت آب مصرفی طرح ریزی گردید.

روش بررسی: در این مطالعه آب 24 دستگاه آب سردکن فلزی متفاوت موجود در دانشگاه علوم پزشکی اصفهان در سال 1387 از لحاظ شمارش بیشتری باکتری‌های هتروتروف و بیشترین فیتوکشیمیایی شامل کادورت. در جمجم پیشرفت و فازی سنجی مورد بررسی قرار گرفت. همچنین نمونه‌های کنترل نیز از ترکیب ترین آب آشامیدنی به دستگاه برداشت کردیم.

یافته‌ها: نتایج حاصل از این مطالعه نشان داد که باکتری‌های هتروتروف کمتر از حد استاندارد بوده و اختلاف معنی‌داری بین نمونه‌های کنترل و دستگاه‌های موجود ندارد. در مورد فازی سنجی نیز اختلاف معنی‌داری بین نابودی نمونه‌های کنترل و آب دستگاه‌ها وجود نداشت و تنها در مورد سین نابودی اختلاف معنی‌دار نشان داده شد.

نتایج گیری: نتایج حاصل از این مطالعه نشان می‌دهد که دستگاه‌های آب سردکن کن فلزی متناول تغییری خاصی را در کیفیت آب ایجاد نمی‌کنند و نکاری در ارتباط با مصرف آب از این دستگاه‌ها وجود ندارد.

واژگان کلیدی: آب آشامیدنی، دستگاه آب سردکن، بیولوژی فلزات سنجی، شمارش باکتری‌های هتروتروف

1- دانشجوی کارشناسی ارشد مهندسی بهداشت بیستش مهیج دانشگاه علوم پزشکی اصفهان
2- کارشناس ارشد مهندسی بهداشت مهیج دانشگاه بهداشت، دانشکده بهداشت، دانشگاه علوم پزشکی اصفهان
3- کارشناس آزمایشگاه میکروبیولوژی دانشگاه بهداشت، دانشکده بهداشت، دانشگاه علوم پزشکی اصفهان
4- کارشناس ارشد آمار حیاتی، مری دانشگاه علوم پزشکی اصفهان
5- کارشناس بهداشت مهیج دانشگاه بهداشت، دانشکده علوم پزشکی اصفهان
6- دکتر ایجاد بیستش مهیج دانشگاه علوم پزشکی اصفهان
مقدمه

امروز یکی از مسائل مهم در حفاظت بهداشت عمومی و سلامتی افراد جامعه‌انه تامین آب آشامیدنی سالم برای مصرف کنندگان است. اگر چه روده‌های غواصی در تصفیه آن می‌تواند به آبی‌سازی مفلوط‌اند و از ظاهری، میکروبی و شیمیایی دست‌بافت، اما نگهداری این کیفیت در طی عملیات توزیع آن هنوز پایین‌تر است. کیفیت آب آشامیدنی در تکنولوژی تصفیه آب است. کیفیت آب آشامیدنی در شهر آب مصرف کنندگان متأثر از خطوط توزیع، منابع ذیل‌های و دستگاه‌های خانگی نسبت به شده توزیع مصرف کنندگان بوجود و نگرانی‌هایی در ارتباط با فرضیه کیفیت آب و بروز آلودگی‌های ناتوانی میکروبی و شیمیایی در حين عملیات انتقال و توزیع آب وجود دارد (۱).

تشکیل بیوفولیم بر روی سطوح لوله‌های انتقال آب، مخازن و دستگاه‌های خانگی فراوری و تصفیه آب یکی از مشکلات قبل توجه و مهم در این رابطه می‌باشد. تشکیل بیوفولیم‌ها یا شناسایی بیولوژیکی که بی‌کیفیتی در این اشکال‌داده‌ها جای‌رو کره زمین می‌باشد، لاها به نسبتی نازکی از میکرو‌گانیزم‌ها هستند که به سطوح چسبیده و رشد می‌کنند. بیوفولیم‌ها در همه چنین‌ها می‌توانند مشکلات جادوگری، جامدیت، هوا و مایع‌ها را در این اشکال‌داده‌ها بوسیله گردند (۲). اما عموماً این ارکان‌هایی که به سطوح جادوگری مرتبط با ما تا نمایش‌های برای رشد و توسیع دارد (۲) اگرچه رشد و توسیع بیوفولیم در بعضی از مدل‌ها مطلوب می‌باشد. اما مشکلات و نگرانی‌های زیادی در ارتباط با بیوفولیم در بررسی‌های کاربرد و سیستم‌های آب وجود دارد (۳). اولاً مقاومت اضافه‌کننده‌ای به سیستم های آبی (۴) و ایجاد وزن و یک در آب از مشکلات مربوط به رشد و توسیع.
آزمایشات فیزیک‌شیمیایی آزمایش‌های فیزیکی و شیمیایی

شده انجام شد.

مواد و روش‌ها

نمونه برداری: برای انجام این مطالعه از 29 آب سردرکن موجود در بخش‌های مختلف دانشگاه علوم پزشکی اصفهان در حالی نمونه‌برداری و pH و غلظت فلزات سنگین بود. pH و غلظت فلزات سنگین بود.

آزمایشات بیکری: برای بررسی وجود بویلیم در دستگاه‌ها و لوله‌های آب شهد آزمایش شمارش بکتری‌ها با استفاده از محیط‌های میکرو (HPC) که شاخصی برای این مظور است، انجام گردید. نمونه‌ها آزمایش بیکری در شیشه‌های استریل حاوی تیوسولفان سدیم برای خش خسته کردن کل آزاد باقی مانده آزاد برداشت گردید. این نمونه‌ها در سریعترین زمان در (Cold Box) و درون چسب سرد به آزمایشگاه منتقل گردیدند.

SPSS باکتری‌های هتروتروف از محیط کشت باکتری‌های Heterotroph (HPC)

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>pH</th>
<th>(EPA)</th>
<th>WHO</th>
<th>(ایران)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کد: (NTU)</td>
<td>50</td>
<td>5/5</td>
<td>≤5</td>
<td></td>
</tr>
<tr>
<td>هتروتروف</td>
<td>50</td>
<td>5</td>
<td>≤5</td>
<td></td>
</tr>
<tr>
<td>cfu/mL</td>
<td>50</td>
<td>5/5</td>
<td>≤5</td>
<td></td>
</tr>
</tbody>
</table>

جدول 1: مقادیر استاندارد پاترامترهای مورد بررسی بر اساس رهتمودهای WHO و استاندارد های سازمان حفاظت محیط زیست ایالات متحده و ایران

Zn(mg/L) Cu(mg/L) Pb(mg/L) Cd(mg/L) Cr (mg/L) Fe(mg/L) pH (EPA) pH (WHO) pH (ایران)

<table>
<thead>
<tr>
<th>مقدار استاندارد</th>
<th>مقدار استاندارد</th>
<th>مقدار استاندارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>
استفادات میانگین تعداد باکتری‌های شمارش بسته‌بندی باکتری‌های هتروتروف از میانگین استاندارد آن در آب آشامیدنی که 500 CFU/ml است (11 و 22) کمتر است. آنالیز آماری نتایج اختلاف آماری معنی‌داری را بین باکتری‌های هترا در نمونه‌های شاهد و اسکلر نشان داد.

جدول ۲: اطلاعات مربوط به پارامترهای اندازه‌گیری شده در نمونه‌های کنترل

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>pH</th>
<th>CFU/mL</th>
<th>Zn (mg/L)</th>
<th>Cu (mg/L)</th>
<th>Pb (mg/L)</th>
<th>Cd (mg/L)</th>
<th>Cr (mg/L)</th>
<th>Fe (mg/L)</th>
<th>شمارش میانگین باکتری‌های (cfa/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>7.5</td>
<td>17</td>
<td>0.14</td>
<td>0.05</td>
<td>0.02</td>
<td>0.001</td>
<td>0.001</td>
<td>0.004</td>
<td>0.005</td>
</tr>
<tr>
<td>کستار</td>
<td>3.28</td>
<td>0.28</td>
<td>0.52</td>
<td>0.42</td>
<td>0.18</td>
<td>0.06</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
</tr>
</tbody>
</table>

اما در مقایسه با استاندارد آب آشامیدنی، نتایج غلظت میانگین کادمیوم بالاتر از مقدار استاندارد است. به هر حال اختلاف معنی‌داری میان مقادیر این دو فاز در نمونه‌های کنترل و آب سردرکن ها مشاهده نگردید. آنالیز آماری نتایج نشان داد که اختلاف معنی‌داری را بین غلظت مس در نمونه‌های کنترل و نمونه‌های دستگاه‌ها نشان می‌دهد که نتایج غلظت مس در نمونه‌های آب سردرکن و کنترل بالاتر از استاندارد مجاز آب آشامیدنی بر اساس رهنمودهای EPA و استاندارد WHO اختلاف معنی‌دار نشان داده شد.

جدول ۳: توزیع فراوانی (٪) مقادیر فزاین در نمونه‌های کنترل و آب سردرکن در مقایسه با استاندارد ایران

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>کادمیوم</th>
<th>زئیت</th>
<th>سرب</th>
<th>کروم</th>
<th>هورم</th>
<th>آهن</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرب (mg/L)</td>
<td>< 0.01</td>
<td>5</td>
<td>> 0.01</td>
<td>5</td>
<td>> 0.01</td>
<td>5</td>
</tr>
<tr>
<td>کروم (mg/L)</td>
<td>< 0.01</td>
<td>5</td>
<td>> 0.01</td>
<td>5</td>
<td>> 0.01</td>
<td>5</td>
</tr>
<tr>
<td>آهن (mg/L)</td>
<td>< 0.01</td>
<td>5</td>
<td>> 0.01</td>
<td>5</td>
<td>> 0.01</td>
<td>5</td>
</tr>
<tr>
<td>نمونه‌های کنترل</td>
<td>93</td>
<td>7</td>
<td>93</td>
<td>7</td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>نمونه‌های آب سردرکن</td>
<td>93</td>
<td>7</td>
<td>93</td>
<td>7</td>
<td>93</td>
<td>7</td>
</tr>
</tbody>
</table>

271
بحث و نتیجه گیری

نتیجه آزمایش های شمارش بلیت هتروتوفیک نشان می‌دهد که اگر چه دستگاه های آپ سردهای حاوی مخازن برای ذخیره آب هستند اما صاف و باکس است سطح فلزی این مخزن و جنس آن که وریا و فولاد ضد زنگ است مالک از روش بیوفیلم می‌گردد. مطالعات انجام شده بر روی سطح مختلف نشان داده که باکتری ها بر روی سطح و یا لوله‌های پلاستیکی پلیمری نظری لانکس، پلی‌تربن و پلی ونیل کلارد نسبت به سطح شیشه ای است (فولاد ضد زنگ) آسان‌تر ساده و رشد و توسه می‌یابد (14 و 13). به علاوه عکس های میکروسکوپی الکترونی نشان داده که احتمالاً سطح مرج دارد در تجمع بیوفیلم ثانوی دارد. (15)

بررسی توزیع فراوانی نمونه‌ها در مقدار مختلف فلات سگن (جدول 2) نشان می‌دهد که 3/8 و 2/8 نمونه‌های کنترل (آب شیر) به ترتیب در مقدار آهی کادیوم و سرب بیش از حد میزان استاندارد ایران است که این مقدار با استاندارد این مقدار برای کادیوم و سرب به ترتیب 1/00 EPA و 2/72 افزایش یافته است که به‌طور ناپایدار این جدول نشان دهده و وجود سرب و کادیوم در نمونه‌ها ناشی از یکی از الگوهای مس کشی و ارتقای ماده شکافته‌های Lasheen نظیر زمان رشد آب در سیستم نشان داده که فاکتورهای شده و کیفیت آب نظیر pH در میزان ارد آب و سرب و آهن از سیستم‌های لوله‌کشی که نشست آن به داخل آب آشامیدنی.
تشکر و قدردانی
این مقاله حاصل طرح تحقیقاتی شماره ۲۸۶/۸۰ مصوب دانشگاه علوم پزشکی اصفهان است. بدرین و سیلیه نویسندگان اعلام می‌کنند.

منابع
17. Khiadani M, Tashayoei HM, Amin MM, Vahid M.
An investigation on concentration of heavy metals from PVC and PP pipes. Isfahan: Isfahan University of Medical Sciences; 2008; Report No. 287004 (in Persian).

Evaluation of the Influence of Conventional Water Coolers on Drinking Water Quality

Taheri E.1, Vahid Dastjerdi M.1, Hatamzadeh M.2, Hassanzadeh A.1, Ghafarian Nabari F.1, *Nikaeen M.1
1Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences
Department of Statistics, School of Health, Isfahan University of Medical Sciences 2

Received 14 July 2009; Accepted 4 October 2009

ABSTRACT
Backgrounds and Objectives: Drinking water quality after treatment and before reaching the consumer could be affected by distribution pipes, service lines and Home devices. The structure of water coolers, a home device that are widely used in warm months of the year, could potentially affect the quality of drinking water. The aim of this study was to assess the microbial and chemical quality of water from conventional water coolers.

Materials and Methods: Water samples were collected from 29 water cooler systems at the Isfahan university of medical sciences. 29 control samples also obtained from the nearest drinking water taps. All samples were examined for total heterotrophic bacteria and physicochemical parameters including temperature, ph, turbidity and heavy metals.

Results: All samples from the water cooler systems complied with the EPA guidelines for total heterotrophic bacteria count. There were no significant differences between the levels of heavy metals in water samples from the water cooler systems and taps. There was only a significant difference between the level of Cu in the water samples from cooler systems and taps

Conclusion: The overall results of this study indicated that the use of water cooler systems from hygiene point of view could not cause any problems for consumers

Key words: Drinking water, water coolers, Biofilm, Heavy metals, Heterotrophic bacteria count

*Corresponding Author: nikaeen@hlth.mui.ac.ir
Tel: +98 311 7922660 Fax: +98 311 7922660