مقایسه کارایی منعقد کننده های مختلف برای تصفیه شیرابه محل دفن زباله‌های شهر همدان

محمد نفی صدیقی، محمد حسن ساوهی، مهدی شیرزاد سپینی، زاله حسنوندی، سمیه رحیمی
نویسنده مسئول: سیروان، دانشگاه علوم پزشکی سیروان، ایرانکوه، گروه بهداشت میوه
دریافت: ۸۸/۰۳/۲۱ پذیرش: ۸۸/۰۳/۲۱

چکیده
زمینه و هدف: تصفیه شیرابه حاصل از محل دفن دفن مواد زاید شهري، به عنوان یکی از مهم‌ترین مسائل محیطی، به‌تدریج در ایران مورد مطالعه قرار گرفته است. از طرفی اکسیدشیمیایی (COD) و کل جامدات معلق (TSS) و کل اکسیدشیمیایی (COD) و کل جامدات معلق (TSS) محل دفن مواد زاید همدان با استفاده از تصفیه کننده های آلم، پی ای، آن‌ای، کلاراید و سولفات فر مورد بررسی قرار گرفته است. در این تحقیق مایعات تصفیه کننده های بهینه و میزان pH غلظت‌های بهینه و میان...
لذا تصفیه شیرابه و آماده سازی بهبودی آن چه تخلیه به محیط زیست بکر، از عناصر بسیار مهم در مدیریت پسماندهای شریه می باشد (3-6). تاکنون روش های معده جهت تصفیه شیرابه در محل فن در کشورهای مختلف دنیا به کار گرفته شده است. این روش به روش فیلتریک - شیمیایی، تبخیر بیشترین، فن آوری روان و شیرابه یا بیولوژیکی اشاره نماید. از جمله روش های مورد استفاده تصفیه مقدراتی شیرابه استفاده می شوند که این متن کنده های رایج می باشد که قابل دسترس و ارزان را می دارند. منبعی از محلول آبی به همراه آب و فاضلاب بسیار رایج شده و استفاده از این مواد به بهترین سه تصفیه ی تصفیه شیرابه در محدوده کشورهای اصلی مصرف دانه دفن، هیورولوژی محل فن، درصد رطوبت، این مواد به همراه فاکتور های مصرف دانه دفن، نیمی گیرد، تفاوت‌های اساسی کیفیت و کمیت شیرابه در کشورهای معمولاً روش‌های تصفیه شیرابه در کشورهای دنف مورد استفاده از رو به رو در سال ۲۰۰۷. برای گواهی بهتر است که مناسب تایپ تحقیق انگلیسی به آموزش مورد استفاده از گواه‌گرایی منابع بازی باید بهتر است که مناسب تایپ تحقیق انگلیسی به آموزش مورد استفاده از گواه‌گرایی منابع بازی و این در حالی است که با توجه به نتایج های اقیمی، زمین در دسترس و به خصوص کیفیت شیرابه و امکانات فن آوری و مالی می توانّ تغییر منابع در انتخاب سیستم‌های تصفیه شیرابه به کار گرفت. بر همین اساس مفهوم روش تصفیه شیرابه در محل فن اعمال‌های تغییراتی در داخل محل دفن مواد زایم جامد شریه به عنوان روش سه‌مرحله‌ای با عضویت و کارا برای کاهش با تصفیه بار یک شیرابه که سطح این مقاله است (۴ و ۵). شیرابه محل دفن بسیار آباد به محیط زیست به خصوص در طرح‌های زیرزمینی وارد نموده و آب‌های منطقه تحت تأثیر قرار دهند. از طرفی شیرابه غنی از مواد آنی و عنصر مورد نیاز جهت رشد گیاهان می باشد.
مواد و روش‌ها

شیرابه‌انجام آزمایش از محل دفن همدان در ۲ نوبت به‌طور گروهی که در شرایط استاندارد و با طرف و مختصات معین به‌طور جداگانه به آزمایشگاه تهیه شده و فایل داشته شدند. گزارش گزارش‌ها و اندازه‌گیری‌ها انجام گردید.

جدول ۱: خصوصیات کلی شیرابه محل دفن مواد زایم همدان

<table>
<thead>
<tr>
<th>خصوصیات</th>
<th>واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td></td>
</tr>
</tbody>
</table>

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

شیرابه‌انجام آزمایش

میزان هیدرولیک و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.

روش انجام آزمایش

میزان بیوتیکی و کل جامدات مطلق نمونه‌ها با استفاده از آزمایش‌های رایج به‌منظور تجزیه و تحلیل و GLC به‌منظور تعیین pH گردید.
كارایی پلی آلومینیوم کلراید در حذف pH
الف: بیشترین راندمان برای حذف PAC در pH 12 و در غلظت 1500 میلی گرم بر لیتر برابر با 56/26/ در pH TSS بیشترین راندمان برای حذف PAC در pH 12 و در غلظت 1500 میلی گرم بر لیتر می باشد (شکل 4).

TSS و COD کارایی سولفات فرو در حذف
الف: بیشترین کارایی سولفات فرو در حذف COD در pH 12 و غلظت 1500 میلی گرم بر لیتر می باشد (شکل 5).

ب. بیشترین کارایی سولفات فرو در حذف TSS در pH 5 و غلظت 1500 میلی گرم بر لیتر می باشد (شکل 6).


d) pH=۳


d) pH=ۢ
کارایی معکود کندنه های مختلف در تصفیه شیراها ...
دیزل ایجاد فلوک های پایین تر و محلول در غلظت های پایین تر و ایجاد فلوک های زیاد و پایداری مجدد محلول غلظت بهبود داده است. با توجه به داده های تهیه شده، روش اแยก و کوکومولاسیون را روش مشابهی است که به ویژه در حادثه محلول است، فلوک های ایجاد شده از نوع خوب بوده و فلوک های آلوم در این دامنه pH بیشتر رسمت می کند.

منابع


Comparison of Different Coagulants Efficiency for Treatment of Hamedan Landfills Leachate Site

Samadi M.T.1, *Saghi M. H . 2, Shirzad M.1, Rahimi S. 1, Hasanvand J. 1

1Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences
2Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran

Received 22 September 2009; Accepted 7 December 2009

ABSTRACT

Backgrounds and Objectives: In Iran, indicated that the municipal landfill leachate has been one of the major problem for environment. In the operations, leachate treatment is a very difficult and expensive process. Although, young leachate can be treated easily by biological treatment, COD removal efficiency are usually low due to high ammonium ion content and the presence of toxic compounds such as metal ions. Treatment of leachate is necessary. The aim of this study is reduction of Chemical Oxygen Demand (COD) and Total Suspended Solids (TSS) from hamedan city sanitary landfill leachate by three coagulants: alum, PAC and ferrous sulfate.

Materials and Methods: This experimental study was conducted to investigate the effect of treatment of landfill leachate by a coagulation–flocculation process. The effects of different amounts of coagulant and different pH values on the coagulation processes were compared.

Results: Result of this survey show that the high efficiency for COD removal by PAC in pH=12 and 2500(mg/l) concentration of PAC was 62.66%, by alum in pH=12 and 1000 (mg/l) concentration of alum was 60% , by ferrous sulfate in pH=2 and 1000 (mg/l) concentration of ferrous sulfate was 70.62%. Also result shown the high efficiency for TSS removal by PAC in pH=12 and 2500(mg/l) concentration of PAC was 58.37%, with alum in pH=2 and 1500 (mg/l) concentration of alum was 39.14% , by ferrous sulfate in pH=7 and 2500(mg/l) concentration of ferrous sulfate was 35.58%.

Conclusion: The best coagulant for COD removal is ferrous sulfate. The physico-chemical process may be used as a useful pretreatment step, especially for fresh leachates, prior to post-treatment (polishing) step for partially stabilized leachates.

Key words: landfill leachate site, Alum/PAC, Ferrous Sulfate, Hamedan

*Corresponding Author: hossien.saghi@gmail.com
Tel: +98 915 3208083 Fax: