بررسی امکان گندزدايی پسب تصفیه‌خانه فاضلاب شمال اصفهان توسط
سیستم‌های گندزدايی کم فشار و فشار متوسط فرابنفش در مقياس پایلوت

حسن هاشمی، محمد مهدی امین، بیژن بی‌تا، حسین موبدنی عطار، حسین فرخزاده
نویسندگان: اصفهان، خیابان هار جریب، دانشگاه علوم پزشکی اصفهان، دانشکده بهداشت، گروه بهداشت محیط
دراسته: 8/08/898
پذیرش: 8/08/898

چکیده
زیسته و هدف: امروزه به دلیل مشکلات بهداشتی، زیست محیطی و اقتصادی کاربرد کلی، انتخاب شده UV جهت گندزدايی پساب یک گزینه برتر است. هدف از انجام این مطالعه بررسی امکان گندزدايی مستقیم پساب تصفیه‌تانيه با اشعه UV و روش برسی از در سیستم گندزدايی فرابنفش کم فشار (LP) و فشار متوسط (MP) گفته و بر طور مستقیم جهت گندزدايی پساب تانیه TC و MP فناوری TSS و استرپتوکس مقداری (FS) و اثرات ناتوکسیک مواد فعال UV جهت مطالعه رسوب گندزدايی سطح کوارتز لامپ ها آنالیز کرد.

پایه ها: در گندزدايی پساب تانیه، اسپتیتی کننده UV در دیدهای اشعه 160 و 180 و mws/cm'، و TC و MP و LF تعداد در دیدهای اشعه 160 و 180 و mws/cm' و FS در دیدهای اشعه 250 و 1000TC و 400 FC و 100 mL. مقدار رشد مجدد کلیه‌ها هاگ کل و مقدار UV در پساب کندزدايی شده با لامپ LP به ترتیب 15 و 3 درصد مشاهده شد.

نتایج گزارش تعیین حساسیت پاس که در کنترلی مستقیم پساب تانیه با سیستم‌های LP و MP تمرکز سنگین‌تر با توجه به کم‌کاری برابری کنترلی پساب تصفیه‌خانه فاضلاب شمال اصفهان با اشعه UV مستلزم بهره‌کاری کاهش پساب از طرف ارتقای بهپردازی FS مقدور نمی‌شود. بنابراین گندزدايی پساب تصفیه‌خانه فاضلاب شمال اصفهان با اشعه UV مستلزم بهره‌کاری کاهش پساب از طرف ارتقای بهپردازی FS مقدور نمی‌شود.

واژگان کلیدی: سیستم کم فشار و فشار متوسط اشعه فرا بنش، گندزدايی پساب، تصفیه‌خانه فاضلاب شمال اصفهان

1- کارشناس ارشد بهداشت محیط، عضو هیئت علمی دانشگاه علوم پزشکی شهید باهنر
2- دکترای بهداشت محیط، استادیار دانشگاه علوم پزشکی اصفهان
3- دکترای بهداشت محیط، استاد دانشگاه علوم پزشکی اصفهان
4- دکترای بهداشت محیط، دانشیار دانشگاه علوم پزشکی اصفهان
5- کارشناس ارشد بهداشت محیط، دانشگاه علوم پزشکی اصفهان
مقدمه

به دلیل رشد در جمعیت و کاهش منابع آب، بازیابی و استفاده از فاضلاب‌هایی در سال های اخیر به خصوص در کشورهای خشک و نیمه شکن در حال افزایش است. باید نوجواند که به دلیل مخاطرات بهداشتی و ریسک محیطی باعث گردیده استفاده مجدد از آب بايد ایمن و مطمئن انجام شود. اگرچه بخشی از میکروکاتیوسم های می‌تواند به دلیل وجود میکروکاتیوسم‌های بیماری‌زا کافی نیست. هدف اصلی کنترل پساب‌های خروجی از تصفیه خانه‌های فاضلاب شری در کاهش حفاظت از آلودگی‌های منفی از راه آب به مصرف به‌عنوان یکی از میراث‌های زیست محیطی در زمینه‌های مختلف مورد نظر است. تاثیر پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌های خروجی استفاده می‌شود به هنگام بستری که برای دسترسی به آن هدف می‌شود. پساب‌ای ضروری نیست.

مواد و روش‌ها

برای بررسی تاثیر پارامترهای کیفی پساب بر عملکرد UV در نوع سیستم کنترل‌کننده می‌تواند فشار و فشار متوسط UV در محل UV بایستی تاثیر پارامترهای کیفی پساب بر عملکرد UV بررسی خانه‌های فاضلاب باشد. اگرچه استفاده از استخراج UV برای کنترل پساب‌های مبتنی بر القوه زیادی مورد استفاده در جمله این که به دلیل مصرف UV/د. ۳۸
دی‌های ۲۴ تا ۲۶ لیتر در دی‌های از پساب‌های خروجی
توصیه خانه افاضلاب مستقیماً توسط لامپ‌های UV مورد پرتوکشی قرار گرفت. در پرتوکشی با تنظیم دوی ورودی به راکتور گندزدایی تنظیم می‌شود. زمان مانده هیدروپلیک به عنوان زمان پرتوکشی در نظر گرفته می‌شود. نتایج در پرتوکشی از حاصل ضرب شدت متوسط اشعه در زمان پرتوکشی بر حسب mW/s/cm² محاسبه گردید.

\[D = I_{avg} t \] (1)

شدت متوسط اشعه تابع شدت اولیه اشعه تابشی از لامپ، عمق نمونه مورد پرتوکشی و میزان جذب اشعه توسط مایع

شکل ۱: طرح شماتیک پابلوت UV مورد استفاده در این مطالعه

پساب نانوتیپ

جدول ۱: مشخصات فنی سیستم شمار متوسط مورد استفاده

<table>
<thead>
<tr>
<th>طول لامپ</th>
<th>طول مولت لامپ</th>
<th>قطر لامپ</th>
<th>قطر پورشه 0.5 کوارتز</th>
<th>جنس راکتور</th>
<th>عمر میف</th>
<th>شکر سازنده</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>mm</td>
<td>mm</td>
<td>km</td>
<td>hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۰۰۰۰</td>
<td>۱۸</td>
<td>۱۰۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

آرد آرامده

جدول ۲: مشخصات فنی سیستم کم فشار مورد استفاده

<table>
<thead>
<tr>
<th>بالاتر گذر اشعه توسط پورشه 0.5 کوارتز(٪)</th>
<th>طول عمر میفیدیلیامب</th>
<th>دمای قابل تحمل</th>
<th>ولتاژ</th>
<th>ابعاد</th>
<th>شکر سازنده</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>°C</td>
<td>v</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷</td>
<td>۵۰۰۰</td>
<td>۵۰۰</td>
<td>۹۲۰۷۶</td>
<td>UV2M55W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

دی‌های ۲۴ تا ۲۶ لیتر در دی‌های از پساب‌های خروجی
توصیه خانه افاضلاب مستقیماً توسط لامپ‌های UV مورد پرتوکشی قرار گرفت. در پرتوکشی با تنظیم دوی ورودی به راکتور گندزدایی تنظیم می‌شود. زمان مانده هیدروپلیک به عنوان زمان پرتوکشی در نظر گرفته می‌شود. نتایج در پرتوکشی از حاصل ضرب شدت متوسط اشعه در زمان پرتوکشی بر حسب mW/s/cm² محاسبه گردید.

\[D = I_{avg} t \] (1)

شدت متوسط اشعه تابع شدت اولیه اشعه تابشی از لامپ، عمق نمونه مورد پرتوکشی و میزان جذب اشعه توسط مایع

شکل ۱: طرح شماتیک پابلوت UV مورد استفاده در این مطالعه

پساب نانوتیپ

جدول ۱: مشخصات فنی سیستم شمار متوسط مورد استفاده

<table>
<thead>
<tr>
<th>طول لامپ</th>
<th>طول مولت لامپ</th>
<th>قطر لامپ</th>
<th>قطر پورشه 0.5 کوارتز</th>
<th>جنس راکتور</th>
<th>عمر میف</th>
<th>شکر سازنده</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>mm</td>
<td>mm</td>
<td>km</td>
<td>hr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۱۰۰۰۰</td>
<td>۱۸</td>
<td>۱۰۵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

آرد آرامده

جدول ۲: مشخصات فنی سیستم کم فشار مورد استفاده

<table>
<thead>
<tr>
<th>بالاتر گذر اشعه توسط پورشه 0.5 کوارتز(٪)</th>
<th>طول عمر میفیدیلیامب</th>
<th>دمای قابل تحمل</th>
<th>ولتاژ</th>
<th>ابعاد</th>
<th>شکر سازنده</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>°C</td>
<td>v</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۷</td>
<td>۵۰۰۰</td>
<td>۵۰۰</td>
<td>۹۲۰۷۶</td>
<td>UV2M55W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
بررسی امکان گندزاپی پساب تصفیه خانه فاضلاب

بله، و طبق معادله 2 محاسبه شد.

\[I_{avg} (\text{mw} / \text{cm}^2) = I_0 \left(1 - \frac{10^{-ad}}{ad}\right) \]

(2)

در این مطالعه شدت اولیه اشعه با قرار دادن پروب رادیومتر در سطح کلمه میکروکراتر پس از حدود 5 دقیقه اندماز گیری می شد. مقدار اندماز گیری شده در اولین دوره بهره برداری بسیار متغیر و در کم بود که گذشت زمان به حد ثابت، 8 mW/cm² و 2 به ترتیب در لاپ کم فشار و فشار متوسط رضیه خند که در دیل خاموش و روش کرد لامپ کم فشار در هر بار نمونه برداری جهت بهره برداری آن به طور سری به لاپ فشار متوسط شدت خروجی آن به حداکثر 7 v که کم می شد. این سطح داخلی محفظه فاصله بین سطح خارجی کراتر تا سطح داخلی محفظه استیل راکتور (4 cm) در راکتور فشار متوسط به عنوان شرایط پرتوهای (d) در نظر گرفته می شد. میزان چند اشعه توسط پساب با استفاده از استک‌گاه اسپکتروفوتomiتر (5000-DR), در طول موج 254 nm حسب cu/cm خوانش می شد. تحت شرایط مختلف (کمیت UV نمونه‌های میکروی (کلرور کل، مدولو و استرپتکوک مدولو) و پارامترهای شیمیایی، SPSS و Excel (آزمون های independent- t و Paired t Test و مورد تجربه و تحلیل قرار گرفت.

dIcmmwI

d
avg
10
1
)/(0
2
kD
eN
Nt
=
0
(P () (
()
100

P (\%) = \left(\frac{N_p - N_i}{N_0 - N_i}\right) \times 100

(3)

Excel

SPSS

t-Test

آزمون های

اقتصادی

به‌طور مستقیم، به‌طور افتراقی یا به‌طور اینکه یافت‌های ادعا‌های نیست که رویتی و پیش‌بینی مشکل راصدی بر سطح گرافیک لامپ‌های با توجه به کیفیت پساب ثانویه، در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار سطح گرافیک از کمیت پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه برداری را نشان می‌دهد. طرح کمتر که در جدول 3 مشخص است، بر اساس عوامل و مقدار نتایج دقت و مطابقت نتایج محیط زیست، کیفیت پساب در حد استانداردهای آزم جهت تحلیل به محیط نیست. رابطه درصد

\[Nt \times N_0 = e^{-ad} \]

(4)

به‌طور مشابه تاین سازی و رشد مجدد باکتری های هدف و پتانسیل تشكل روابط بر سطح گرافیک لامپ‌های با توجه به هفت UV پاسب ثانویه در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار متوسط پارامترهای کیفی پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه برداری را نشان می‌دهد. طرح کمتر که در جدول 3 مشخص است، بر اساس عوامل و مقدار نتایج دقت و مطابقت نتایج محیط زیست، کیفیت پساب در حد استانداردهای آزم جهت تحلیل به محیط نیست. رابطه درصد

در این بخش، یافته‌های حاصل از تحقیق از نظر غير

Excel

SPSS

t-Test

آزمون های

اقتصادی

به‌طور مستقیم، به‌طور افتراقی یا به‌طور اینکه یافت‌های ادعا‌های نیست که رویتی و پیش‌بینی مشکل راصدی بر سطح گرافیک لامپ‌های با توجه به کیفیت پساب ثانویه، در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار سطح گرافیک از کمیت پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه برداری را نشان می‌دهد. طرح کمتر که در جدول 3 مشخص است، بر اساس عوامل و مقدار نتایج دقت و مطابقت نتایج محیط زیست، کیفیت پساب در حد استانداردهای آزم جهت تحلیل به محیط نیست. رابطه درصد

\[Nt \times N_0 = e^{-ad} \]

(4)

به‌طور مشابه تاین سازی و رشد مجدد باکتری های هدف و پتانسیل تشكل روابط بر سطح گرافیک لامپ‌های با توجه به کیفیت پساب ثانویه در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار متوسط پارامترهای کیفی پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه برداری را نشان می‌دهد. طرح کمتر که در جدول 3 مشخص است، بر اساس عوامل و مقدار نتایج دقت و مطابقت نتایج محیط زیست، کیفیت پساب در حد استانداردهای آزم جهت تحلیل به محیط نیست. رابطه درصد

\[Nt \times N_0 = e^{-ad} \]

(4)

به‌طور مشابه تاین سازی و رشد مجدد باکتری های هدف و پتانسیل تشكل روابط بر سطح گرافیک لامپ‌های با توجه به کیفیت پساب ثانویه در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار متوسط پارامترهای کیفی پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه برداری را نشان می‌دهد. طرح کمتر که در جدول 3 مشخص است، بر اساس عوامل و مقدار نتایج دقت و مطابقت نتایج محیط زیست، کیفیت پساب در حد استانداردهای آزم جهت تحلیل به محیط نیست. رابطه درصد

\[Nt \times N_0 = e^{-ad} \]

(4)

به‌طور مشابه تاین سازی و رشد مجدد باکتری های هدف و پتانسیل تشكل روابط بر سطح گرافیک لامپ‌های با توجه به کیفیت پساب ثانویه در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار متوسط پارامترهای کیفی پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه برداری را نشان می‌دهد. طرح کمتر که در جدول 3 مشخص است، بر اساس عوامل و مقدار نتایج دقت و مطابقت نتایج محیط زیست، کیفیت پساب در حد استانداردهای آزم جهت تحلیل به محیط نیست. رابطه درصد

\[Nt \times N_0 = e^{-ad} \]

(4)

به‌طور مشابه تاین سازی و رشد مجدد باکتری های هدف و پتانسیل تشكل روابط بر سطح گرافیک لامپ‌های با توجه به کیفیت پساب ثانویه در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار متوسط پارامترهای کیفی پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه برداری را نشان می‌دهد. طرح کمتر که در جدول 3 مشخص است، بر اساس عوامل و مقدار نتایج دقت و مطابقت نتایج محیط زیست، کیفیت پساب در حد استانداردهای آزم جهت تحلیل به محیط نیست. رابطه درصد

\[Nt \times N_0 = e^{-ad} \]

(4)

به‌طور مشابه تاین سازی و رشد مجدد باکتری های هدف و پتانسیل تشكل روابط بر سطح گرافیک لامپ‌های با توجه به کیفیت پساب ثانویه در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار متوسط پارامترهای کیفی پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه برداری را نشان می‌دهد. طرح کمتر که در جدول 3 مشخص است، بر اساس عوامل و مقدار نتایج دقت و مطابقت نتایج محیط زیست، کیفیت پساب در حد استانداردهای آزم جهت تحلیل به محیط نیست. رابطه درصد

\[Nt \times N_0 = e^{-ad} \]

(4)

به‌طور مشابه تاین سازی و رشد مجدد باکتری های هدف و پتانسیل تشكل روابط بر سطح گرافیک لامپ‌های با توجه به کیفیت پساب ثانویه در قالب جداول و شکل‌ها آشده است. جدول 3 مقدار متوسط پارامترهای کیفی پساب ثانویه و رودی به پایلوت در دمای های مختلف نمونه بردا
جدول ۳: مقادیر متوسط پارامترهای کشفی یا سبب تاثیر ویروس به پایلوت

<table>
<thead>
<tr>
<th>جهش عبور (a.u/cm)</th>
<th>جدید</th>
<th>pH</th>
<th>TSS (mg/L)</th>
<th>TC MPN/100mL</th>
<th>FC MPN/100mL</th>
<th>FS MPN/100mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>5/0</td>
<td>5/0×10^6</td>
<td>2/1×10^5</td>
<td>2/1×10^5</td>
<td>2/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>6/0</td>
<td>6/0×10^6</td>
<td>3/1×10^5</td>
<td>3/1×10^5</td>
<td>3/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>1/0</td>
<td>1/0×10^6</td>
<td>1/1×10^5</td>
<td>1/1×10^5</td>
<td>1/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>3/0</td>
<td>3/0×10^6</td>
<td>3/1×10^5</td>
<td>3/1×10^5</td>
<td>3/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>5/0</td>
<td>5/0×10^6</td>
<td>5/1×10^5</td>
<td>5/1×10^5</td>
<td>5/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>7/0</td>
<td>7/0×10^6</td>
<td>7/1×10^5</td>
<td>7/1×10^5</td>
<td>7/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>9/0</td>
<td>9/0×10^6</td>
<td>9/1×10^5</td>
<td>9/1×10^5</td>
<td>9/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>2/0</td>
<td>2/0×10^6</td>
<td>2/1×10^5</td>
<td>2/1×10^5</td>
<td>2/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>4/0</td>
<td>4/0×10^6</td>
<td>4/1×10^5</td>
<td>4/1×10^5</td>
<td>4/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>6/0</td>
<td>6/0×10^6</td>
<td>6/1×10^5</td>
<td>6/1×10^5</td>
<td>6/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>8/0</td>
<td>8/0×10^6</td>
<td>8/1×10^5</td>
<td>8/1×10^5</td>
<td>8/1×10^5</td>
</tr>
<tr>
<td>1/1</td>
<td>0/03</td>
<td>1/0</td>
<td>1/0×10^6</td>
<td>1/1×10^5</td>
<td>1/1×10^5</td>
<td>1/1×10^5</td>
</tr>
</tbody>
</table>

نحوه سازی و رشد مجدد باکتری های هدف در گندزداي

پساب لاثیه

در شکل ۴ نگاره نمایه‌نمایی یا سبب تاثیر UV بر توده‌های باکتری‌های هدف پس از UV بسته‌بندی و سپس مایع در تئودر رپیر شده است. تعداد Np با کمک تعداد منفی مثبت بندی به حضور بی‌بندی پس از گندزداي شد. نهایی UV تعداد نهایی باکتری‌های قبل از گندزداي است. فعالیت مجدد باکتری‌های با گندزداي یا UV از شکل ۴ نشان داده شده است. یا UV با کسری نهایی با انتشار (نور مربع) با شدت ۶۰۰۰ لومکس در شکل ۴ نشان داده شده است.

عبور UV از پساب در ۲۵۴ نم یا شدید

در شکل ۴ نشان داده شده است.

![نمودار]()

شکل ۴: دیدگاه عبور اشعه UV در مقابل محتوای TSS بی‌بندی

شکل ۴: تعداد باکتری‌های UV از پساب در ۲۵۴ نم یا شدید

\[y = -0.0706x + 12.861 \]

\[R^2 = 0.7428 \]
بررسی امکان گندزدايی پساب تصفیه خانه فاضلاب...

بحث

پرسه میزان رسوب گذاری بر سطح کوارتز به طور متوسط در ۲ درصد از کل و مقداری پس از گندزدايی رشد مجدد مشاهده شده است. کارایی سیستم UV در گندزدايی پساب تائویه در حالت مجزا و تلفيق هر دو نوع لامپ در شكل ۵ نشان داده شده است. بررسی مطالعات پایه، شرایط مناسب گندزدايی پساب تائویه با لامپ های کم فشار، فشار متوسط و تلفيق هر دو لامپ در دو ورودي به راکور ۲ L/min و ۲ و ۲ کیلفرم كلی مدفوعی و استریتروکور ورودي به ترتيب در ۱۵۰ و ۵۰۰ میکرون در این مطالعه pH تاثيري بر عملکرد گندزدايی سیستم نداشت.
فصل اول: کارایی الگ: لامپ کم فشار، ب: لامپ فشار متوسط و ج: تلفیق لامپ های کم فشار و فشار متوسط در غیرفعال سازی باکتری های هدف

شکل 2: عملکرد بیشتری های هدف پس از گندزنده پس تانیه توسط الگ: لامپ کم فشار، ب: لامپ فشار متوسط و ج: تلفیق لامپ های کم فشار و فشار متوسط

در اینجا نمودارهای چندان نمایش نمی‌دهند.
جدول 2: شرایط مناسب گندزدایی پساب ثانویه با لامپ های فرابنفش

<table>
<thead>
<tr>
<th>FS(out)</th>
<th>FC(out)</th>
<th>TC (out)</th>
<th>UV %</th>
<th>زمان</th>
<th>شدت متوسط</th>
<th>نوع لامپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN/100mL</td>
<td>MPN/100mL</td>
<td>MPN/100mL</td>
<td>mW.s/cm²</td>
<td></td>
<td>m.W/cm²</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>280</td>
<td>1000</td>
<td>1</td>
<td>82</td>
<td>2</td>
<td>LP</td>
</tr>
<tr>
<td>160</td>
<td>185</td>
<td>710</td>
<td>1</td>
<td>63</td>
<td>8</td>
<td>MP</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>120</td>
<td>1</td>
<td>677</td>
<td>10</td>
<td>LP+MP</td>
</tr>
</tbody>
</table>

عبور اشعه در طول موج 254 nm از پساب ثانویه در مدت 15 دقیقه به دست آمده است. این آزمایشات به این معناست که شدت اشعه UV نسبت به مقدار متوسط کم و مقدار پس از گردزدایی پساب ثانویه به مقدار متوسط مشاهده شده است.

دیگر عکس: نمایی از رسوب تشویق شده بر سطح کوارتز لامپ های فشار سطح و کم فشار UV

جدول 2: شرایط مناسب گندزدایی پساب ثانویه با لامپ های فرابنفش

<table>
<thead>
<tr>
<th>FS(out)</th>
<th>FC(out)</th>
<th>TC (out)</th>
<th>UV %</th>
<th>زمان</th>
<th>شدت متوسط</th>
<th>نوع لامپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN/100mL</td>
<td>MPN/100mL</td>
<td>MPN/100mL</td>
<td>mW.s/cm²</td>
<td></td>
<td>m.W/cm²</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>280</td>
<td>1000</td>
<td>1</td>
<td>82</td>
<td>2</td>
<td>LP</td>
</tr>
<tr>
<td>160</td>
<td>185</td>
<td>710</td>
<td>1</td>
<td>63</td>
<td>8</td>
<td>MP</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>120</td>
<td>1</td>
<td>677</td>
<td>10</td>
<td>LP+MP</td>
</tr>
</tbody>
</table>

عبور اشعه در طول موج 254 nm از پساب ثانویه در مدت 15 دقیقه به دست آمده است. این آزمایشات به این معناست که شدت اشعه UV نسبت به مقدار متوسط کم و مقدار پس از گردزدایی پساب ثانویه به مقدار متوسط مشاهده شده است.

دیگر عکس: نمایی از رسوب تشویق شده بر سطح کوارتز لامپ های فشار سطح و کم فشار UV

جدول 2: شرایط مناسب گندزدایی پساب ثانویه با لامپ های فرابنفش

<table>
<thead>
<tr>
<th>FS(out)</th>
<th>FC(out)</th>
<th>TC (out)</th>
<th>UV %</th>
<th>زمان</th>
<th>شدت متوسط</th>
<th>نوع لامپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN/100mL</td>
<td>MPN/100mL</td>
<td>MPN/100mL</td>
<td>mW.s/cm²</td>
<td></td>
<td>m.W/cm²</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>280</td>
<td>1000</td>
<td>1</td>
<td>82</td>
<td>2</td>
<td>LP</td>
</tr>
<tr>
<td>160</td>
<td>185</td>
<td>710</td>
<td>1</td>
<td>63</td>
<td>8</td>
<td>MP</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>120</td>
<td>1</td>
<td>677</td>
<td>10</td>
<td>LP+MP</td>
</tr>
</tbody>
</table>

عبور اشعه در طول موج 254 nm از پساب ثانویه در مدت 15 دقیقه به دست آمده است. این آزمایشات به این معناست که شدت اشعه UV نسبت به مقدار متوسط کم و مقدار پس از گردزدایی پساب ثانویه به مقدار متوسط مشاهده شده است.

دیگر عکس: نمایی از رسوب تشویق شده بر سطح کوارتز لامپ های فشار سطح و کم فشار UV

جدول 2: شرایط مناسب گندزدایی پساب ثانویه با لامپ های فرابنفش

<table>
<thead>
<tr>
<th>FS(out)</th>
<th>FC(out)</th>
<th>TC (out)</th>
<th>UV %</th>
<th>زمان</th>
<th>شدت متوسط</th>
<th>نوع لامپ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN/100mL</td>
<td>MPN/100mL</td>
<td>MPN/100mL</td>
<td>mW.s/cm²</td>
<td></td>
<td>m.W/cm²</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>280</td>
<td>1000</td>
<td>1</td>
<td>82</td>
<td>2</td>
<td>LP</td>
</tr>
<tr>
<td>160</td>
<td>185</td>
<td>710</td>
<td>1</td>
<td>63</td>
<td>8</td>
<td>MP</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>120</td>
<td>1</td>
<td>677</td>
<td>10</td>
<td>LP+MP</td>
</tr>
</tbody>
</table>

عبور اشعه در طول موج 254 nm از پساب ثانویه در مدت 15 دقیقه به دست آمده است. این آزمایشات به این معناست که شدت اشعه UV نسبت به مقدار متوسط کم و مقدار پس از گردزدایی پساب ثانویه به مقدار متوسط مشاهده شده است.
محمدهدی امین و همکاران

بیولون ۲۰ درصد در دو ۵ mJ/m² و کمتر از یک درصد در دو ۴۰ mJ/m². در این مطالعه با اعمال در بخش رشد مجدد کلیفرم هایی مشابه شد. در طی رشد کلیفرم های کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده

Reading 1.41 گرفت. در این مطالعه از این نتیجه بر اساس پاسب‌گردندزایی کلیفرم Hای بهره‌برداری شد. در طول مدت کلیفرم های کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده کل و مقداری از پاسب‌گردندزایی شده mJ/cm² نیاز به کاهش و نیاز به پاسی بایسته که با توجه به معیار خاص Derived L/min از ۷/۲ بوده که با توجه به مقدار MPN/۱۰۰۰ میلی‌لیتر در محدوده

Downloaded from ijhe.tums.ac.ir at 0:49 IRDT on Tuesday March 24th 2020
پرورش امکان گندزدایی پساب تصفیه خانه فاضلاب

جهت گندزدایی پساب تصفیه خانه فاضلاب شمال اصفهان با
اشته UV پیشنهاد می‌شود که با استفاده از واحد‌های تصفیه
پیشرفته مانند فیلتراسیون، جامدات معلق پساب قبل از سیستم
گندزدایی کاهش داده شود.

تشکر و قدردانی
این تحقیق با حمایت مالی استاندارد اصفهان و همکاری
شرکت آب و فاضلاب استان اصفهان به انجام رسیده است که
از همکاری و مساعدت آنها صمیمانه سپاس گزاری می‌شود.

آیده تا شرایط کیفی پساب جهت گندزدایی با استفاده
ارزیابی قرار گرفت. در این مطالعه، گندزدایی مستقیم پساب
تاثیر UV با استفاده UV به دلیل غلظت بالای جامدات معلق و
عبرت بسیار کم اشعه، فقط در دبی‌های کم و زمان پروتوئی
نسبتاً زیاد می‌باشد. در دهه‌های مداوم عملی مقدار نیست
و منابع استفاده از واحد‌های پیش تصفیه قبل از سیستم
گندزدایی UV می‌باشد. همین کیفیت تام‌لون پساب
تصفیه خانه منجر به فعالیت جدید باکتری‌ها پس از گندزدایی
و رسوب گذاری قابل توجه بر سطح کاوری گردید. بنابراین

Survey on possibility of Disinfection of Isfahan North Wastewater Treatment Plant Effluent by Low and Medium Pressure Ultraviolet Systems in Pilot Scale

Hashemi H.¹, *Amin M.M.², Bina B.², Movahedian Attar H.², Farrokhzadeh H.²
¹Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Chaharmahal and Bakhtiari, Iran
²Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

Received 18 October 2009; Accepted 28 December 2009

ABSTRACT

Backgrounds and Objectives: Today, due to health, environmental and economical problems, of chlorine application, UV radiation is better option than chlorine for disinfection of effluent. The aim of this study was disinfection of secondary effluent with UV radiation.

Materials and Methods: Two types of UV disinfection system including low pressure (LP) and medium pressure (MP) was used to disinfection of Isfahan North Wastewater Treatment Plant (INWWTP) effluent without pretreatment. Single and combined lamps were operated to evaluate the removal of total and fecal coliforms (TC and FC), and fecal streptococcus (FS). TSS, iron, hardness, UV absorption and transmittance were analyzed in order to observe the fouling of the quartz sleeves.

Results: After using LP lamp with dose of 161 mws/cm², TC and FC content was declined to standard level (1000 TC, and 400 FC/100ml). In addition, disinfection with MP lamp was led to FS content of 400 MPN/100 mL. Combination of LP and MP, with dose of 460 mws/cm² could be met the environmental requirements of TC & FC, and the FS count was reached to 400 MPN/100 mL with dose of 237 mws/cm². Maximum photo-reactivation percentage of coliforms after LP and MP lamps were appeared 15 and 3 percent respectively, while it was not observed for FS.

Conclusion: High fluctuation in secondary effluent quality of INWWTP mainly TSS concentration was caused to decline of the UVT value. Therefore, disinfection of effluent by LP, MP and even combined both systems are not applicable in conventional UV dose. Hence, using advanced process unit before UV disinfection system is necessary for removal of TSS.

Key words: Low and Medium pressure UV system, Disinfection, Isfahan North WWTP

*Corresponding Author: amin@hlth.mui.ac.ir
Tel: +98 311 6682509 Fax: +98 311 6682509