شناسایی کلیفرم های کل و گوارشی و هتروتورف ها به روش میکروپولوزی در Real Time PCR به روش های ایمنولوژیک و تصفیه خانه آب اصفهان

پیمانه عاطف‌بخشی، محمد مهدی امینی، سید حسین مرتضوی، مجید باران، عباس اخوان سهیه، اشرف السادات نوی، محمد جلالی
نویسنده: اصفهان، خیابان جراحی، دانشگاه علوم پزشکی اصفهان، مرکز تحقیقات محیط زیست
دریافت: 90/01/19
پذیرش: 89/08/12

چکیده
زمینه و مقدمه: در این مطالعه روی نماینده کلیفرم های کل و گوارشی و هتروتورف ها و شناسایی باکتری بیماری زای E.coli O157: H7 با Real Time PCR روش های میکروپولوزی، ایمنولوژیک و و روی نماینده کلیفرم های کل و گوارشی، شمارش هتروتورف ها، کدکردن و کل کردن آن در هفت دقیقه شامل آب و خاک آمیخته، روش بررسی براکتیک تیماری به ترتیب روش Real Time PCR و روی نماینده E.coli O157: H7 تصنیف خانه خانه تنش‌بندی آب و خاک در حاضر و صورتی تصبیح خانه آب اصفهان مورد روش Real Time PCR با پرپ های نماشگاه شده و جزئی کردن E.coli O157: H7 در هفت دقیقه نماینده T.C. O157: H7 کلیفرم کل، گوارشی و هتروتورف ها توسط واحده و ناحیه معالج به ترتیب 0.947، 94.2، 94.2، 22.5/105 و 94.2، 22.5/105 و 94.2/105 درصد می‌باشد.

نتیجه گیری: این مطالعه وجود سبیل پیامبر زای کلیفرم را در لجن حوضجه های تنش‌بندی تصبیح خانه آب اصفهان ثابت نمود. عدم وجود این سبیل در پاراکالی خاک از آن است که قراردادهای موجود در حاضر و صورتی تصبیح خانه قادر به حذف این باکتری بکر از رسیدن به مرحله انتهایی تصبیح خانه مثل فیلترین و واحده کلریدی کمی به شکل متعدد.

واژگان کلیدی: کلیفرم کل، کلیفرم گوارشی، شمارش هتروتورف ها، E.coli O157: H7. Real time PCR
مقدمه

اهداف اولیه تصفیه آب آشامیدنی از دیدگاه میکروبیولوژی، تضمین عدم وجود هر نوع باکتری بیماری زا در آب تصفیه شده و محدود کردن رشد و چرب توزیع آب است. تاریخ نان می‌ده که از این‌رو از این افراد بیماری و کمیت آب وجود داشته است. طبق گزارش‌های سازمان جهانی بهداشت (WHO)، یک سوم سرموم دنیا از این آشامیدنی آلوده رنج می‌برند. هر سال حدود ۱۳ میلیون نفر به خاطر عفونت‌های حاصل از آب آلوده از میان می‌روند که بیش از ۲ میلیون این تعداد کودک‌هستند. (1) در سال ۱۹۹۶ باکتری‌های هتروتروف را به عفونت‌شاخه کیفیت آب آشامیدنی معنی و شمارش این ارگانیسمها را به شمارش پیش یا استاندارد (HPC) Heterotrophic Plate Count می‌داند که در آب آشامیدنی از ۱۰۰ تا ۵۰۰ با در E.coli و CFU (Colony Forming Unit) در E.coli در میلی لتر تعبیر می‌شود. (۲) به توجه به این که آب فراوان بوده و تنها نمونه‌های بسیار قابل انقال از طریق آب است‌بنا بر این باید به عناوین ارگانیسم‌شاخه به منظور نشان دادن وجود رایانده‌های شاخص محوران استفاده می‌شود و پیچیده‌های این آب به زودی تعبیر می‌شود. (۳) اکثر عفونت‌های آسیب‌زا از میان آب به علت عفونت‌های ایداج (ETEC) Enterotoxigenic EHEC (Enterohemorrhagic) شده از انتروتوکسین‌ها و سپس شیکا توسکین (STEC) Shiga-like Toxigenic E.coli که مصرف U2G آب کننده جهت کنترل عفونت‌ها و واکنش‌های تصفیه آب و پیشگیری از شیوع بیماری‌های قابل انقال از آب محروم S سرمازده و باعث کلیوتوکسین‌های دهنده و تقویت قدرت آنتی‌بیوتیک‌های کلیه باعث ایجاد عفونت‌های خون به دلیل مغز و نهایتاً منجر به فلج شدن آنها می‌شود. (۴) در سال‌های اخیر تکنیک‌های تاسیسی پیشرفته نانوذرات و برای تشخیص سپس‌های حساس زیستی Real time PCR به‌عنوان یک نقش اصلی در این مطالعه از دسترسی می‌باشد.
روش میکروبیولوژی

آنتیلر نمونه های کلیفرم کل، گواشی و شمارش باکتری های هتروتروف بر اساس یکتا کتاب‌شده است. این کتاب‌شده برای ارزیابی گروه‌های مهاجم سازماندهی شده است. در روش Lactose میکروبیولوژی محیط های کشت مورد استفاده شامل کلیفرم کل در مراحل احتمالی برای کلیفرم کل و برای R Agar و تندی، کلیفرم کل و برای Ec Broth و گواشی، شمارش باکتری های هتروتروف تست شده است. کلیف حیاتی کشت از شرکت مرك آلیان تهیه شده و مورد استفاده قرار گرفت. باکتری های هتروتروف (HPC) ارزیابی کلیف (کلیف بی‌گیاهی) آب آشامیدنی و گواشی و گواشی های بای گواشی مورد که آن گروه کلیفی کلیف‌های شمارش می‌شود و تعداد کلیف که بالا حاصل اهمیت (MPN) Most Probable Number کلیف‌های کل و گواشی بر حسب گواشی و کلیف‌های شمارشی که حادثه محتمل تعریف می‌شود. عدد مربوط به (MPN) محاسبه تعداد کلیف‌هایی که می‌شود به نظر کلیف و وجود داشته باشد و ممولا در 100 میلی لیتر آب تعیین می‌شود.

روش ایمپلیکی

یکی از اهداف این مطالعه تفکیک باکتری پیروکاروتین‌های بیماری‌زا فراهم شده است. با پیشرفت این امکان وجود دارد که این باکتری‌ها جدید به شناسایی توده‌ای شده.

شده نشانه‌ای شونده (4). در این داده، گردتر گردیده برای نشان دادن نشان دهنده عمل

در تصویف آب به کار می‌رود. در سیستم‌های که از فرآیند صاف سازی استفاده می‌شود با اطمینان حاصل گردید که

در (Nephelometric Turbidity Unit) NTU از 1

حدود 100 از نمونه‌های فرآیند نمی‌رود.

سازمان حفاظت محیط زیست ایران، استاندارد آب آشامیدنی برای کلیفرم‌های کل، گواشی (مدفوعی) را برای صفر و حداکثر کدورت را 1.3

NTU تعیین کرده است (3).

اندازه‌گیری مقدار کل بی‌کربن (TOC) Total Organic Carbon در تعیین کارایی تصفیه خانه های آب اهمیت اساسی دارد.

وجود می‌دانند در موارد مقدار آب آشامیدنی مورد نیاز یکین‌ر کرای در برای رشد باکتری‌ها از فرآیندها به وسیله

یابن سرعت بخشنده به روش سرعت بخشنده در لوله ها می‌شود. بنابراین وجود می‌دانند الکم کم تر در آب نشان دهنده کمیت بهتر آب است. مقدار آب کلیفرم شده پانصار کم تر 2 mg/L از هدف انجام این مطالعه بررسی حذف کلیفرم‌های کل و گواشی و شمارش هتروتروف ها به روش میکروبیولوژی (E.coli O157: H7) و شناسایی باکتری بیماری زایزی (E.coli O157: H7) را برای مقایسه با روش های E.coli O157: H7 از روشهای ایمنولوژیک و Real Time PCR و

واگاه‌های مختلف تصفیه خانه آب اصفهان می‌باشد.

مواد و روش‌ها

این تحقیق از نوع توصیفی تحلیلی بوده و به مدت 9 ماه در این است.Klor از نوع توصیفی خانه آب اصفهان با گروهی تا به پایه‌ای 120/10

یکی از اهداف این مطالعه تفکیک باکتری

میکروگانیسم‌های بیماری‌زا فراهم شده است. با پیشرفت این امکان وجود دارد که این باکتری‌ها جدید به شناسایی توده‌ای شده.
شناسایی کلیفرم‌های کل و گوارشی

با استفاده از Real time PCR نتیجه‌گیری شد که E.coli O157:H7 یک رشته از DNA با آن اضافه کرده و با 500 میکرولیتر کاربرف نشان داد که E.coli O157:H7 در برابر همه انواع افزوده های امپیراکس و Taqman DNA آنیمی یپروپیناز و SDS بیش از 2 ساعت در بین مایعات 60 درجه قرار داده شد. می‌توانست از زیر

جدول 1: پرایمرهای مورد استفاده در این مطالعه

<table>
<thead>
<tr>
<th>پرایمر</th>
<th>Oligomer</th>
<th>Primer sequence 5-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO157 eaeA</td>
<td>F</td>
<td>CAATTTTTCAGGGAATAACATTGC</td>
</tr>
<tr>
<td>EO157 eaeA</td>
<td>R</td>
<td>AAGTTCAGATCTTGATGACATTG</td>
</tr>
<tr>
<td>Probe</td>
<td></td>
<td>FAM-TCAAGAGTTGCCCATCCTGCAGCAA-BHQ1</td>
</tr>
</tbody>
</table>

کلی فای که مشکوک به یک همه‌شیاران و برو محیط‌های

استبان که لاکتوز را تخمیر کرده و برو محیط‌های E.coli O157: H7

- مایع فاز واحد ایزوپروپانول 100% با به میزان 2 برای حجم
- مایع فاز واحد مایع 100% با به مدت 120 دقیقه
- مایع فاز واحد 1200 rpmدور
- مایع فاز واحد 1200 rpmدور

روش: با استفاده از کلی فای آنتی‌سرم یک اکتیک، کلی فای

Real time PCR
با توجه به اهداف تحقیق، یافته های به دست آمده برای شناسایی کلیفرم های کل (TC: Total Coliforms) و گوارشی (FC: Feacal Coliforms) در 100 میلی لیتر و هتروتروف‌ها (HPC) در CFU در میلی لیتر در نقاط هشتمان در مدت ۲-۴ ارایه شده است.

بروفیل کارایی واحدهای مختلف تصفیه خانه اپ اسفهان از TOC و حفظ کلیفرم کل، گوارشی و HPC و کدورت و TOC در مدت ۲ آوریل شده است.

یافته های مربوط به روند تغییرات کدورت و TOC واحدهای مختلف تصفیه خانه اپ اسفهان در شکل ۵ نشان داده شده است.

TOC و HPC

در ۶ نمونه نمونه ای برداشت شده از نظر کدورت و نیز مورد آزمایش قرار گرفته است. در این مطالعه برای اندازه‌گیری کدورت از دستگاه کدورت نسج مدل-۲۱۰ نی و برای مسنجش کل کربن آلی از دستگاه TOC مدل SHIMADZU TOC- VCSH از تیپ استفاده گردید.

<table>
<thead>
<tr>
<th>Sampling points</th>
<th>Intake</th>
<th>Raw Wat.</th>
<th>Clarifire</th>
<th>Ozonation</th>
<th>Filter-2</th>
<th>Filter-3</th>
<th>Filter-4</th>
<th>Treated Wat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>9000</td>
<td>8000</td>
<td>7000</td>
<td>6000</td>
<td>5000</td>
<td>4000</td>
<td>3000</td>
<td>2000</td>
</tr>
<tr>
<td>FC</td>
<td>1000</td>
<td>900</td>
<td>800</td>
<td>700</td>
<td>600</td>
<td>500</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>HPC</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

شکل ۲: شمارش کلیفرم های کل (TC) و گوارشی (FC) و هتروتروف‌ها (HPC) در واحدهای مختلف تصفیه خانه اپ اسفهان در فصل زمستان ۸۷.

برای انجام فرآیند PCR به این تیوب ها مواد لازم شامل پرایمر اختصاصی، پرور، Anzyme dNTPs، MgCl2، و بافر اضافه گردیده و پس از اختلاف Taqpolymerase محیوت‌ها در دستگاه PCR می‌باشد. برای انجام PCR طیف سیکل‌های ۹۵ درجه به مدت ۲ دقیقه و ۴۰ سیکل ۹۴ درجه به مدت ۱۵ ثانیه و ۶۰ دقیقه به مدت ۱ دقیقه قرار داده شد. در این مطالعه از دستگاه Real time PCR Corbett Research (مدل ۶۴۰۰) استفاده گردید.
شمارش کلیفلر های کل و گوارشی در واحد های مختلف تصفیه حانه آب اصفهان در فصل بهار

شکل 3: شمارش کلیفلر های کل (TC) و گوارشی (FC) و هتروترف ها (HPC) در واحد های مختلف تصفیه حانه آب اصفهان در فصل بهار

شکل 4: نمودار حجمی تعدادی شمارش کلیفلر های کل و گوارشی در واحد های مختلف تصفیه حانه آب اصفهان در فصل بهار

Sampling points

Sampling points

Sampling points

Sampling points
Real time PCR

Comparative Threshold

CT

Real time PCR is a method that allows the quantification of DNA or RNA sequences by amplifying a specific region of interest (ROI) using a primer pair. It involves the detection of a fluorescent signal, which is proportional to the amount of DNA or RNA present.

- **CT** (threshold cycle) is the number of cycles required for the fluorescence signal to reach a predetermined threshold.

- **Real-time PCR** is a powerful tool used in molecular biology to detect and quantify specific DNA or RNA sequences.

- **HPC** (high-performance chromatography) is a technique used to separate and quantify molecules based on their size and shape.

- **TOC** (total organic carbon) is a measure of the total organic matter present in a sample, often used in water analysis.

- **TC** (total carbon) is a measure of the total carbon content in a sample, including both organic and inorganic carbon.

- **Turbidity** is a measure of the cloudiness or haziness of a liquid, caused by the presence of suspended particles or dissolved substances.

The graph shows the changes in TOC and turbidity at different sampling points. The data is presented in a table format, with columns for sampling points, TOC, turbidity, HPC, and FC.

Intake Raw Wat.

Clarifier

Ozonation

Filter-2

Filter-3

Filter-4

Treated Wat.

The data indicates a significant reduction in TOC and turbidity after each treatment step, with the treated water having the lowest TOC and turbidity levels.
بر روی چشمه و چاه در افرینگ مرکزی غلظت میانگین کلیفرم‌های میکروفرآور را از 10 تا 10 7 CFU در هر میلی لیتر آب مشاهده است (۱۳).

بر اساس یافته‌های اراسته شده در جدول (۲)، کاراکتر واحده ته نشینی (شامل واحدهای انعقاد و لخته سازی) برای حذف کلیفرم‌های کل و گوارشی HPC به ترتیب برای ۱۵/۹۶ و ۴۹/۷۲ درصد باشد. در گزارش عملاً عامل حذف خانه‌های کششی مختلف حذف میکروبی انعقاد و لخته سازی ۲۷ تا ۷۲ درصد برای پانکرک و ۱۰ (۱۰) بانرباین، راندمان HPC حذف کلیفرم‌های کل و گوارشی HPC، مشاهده نمود. در این تحقیق نشان داده شد که راندمان حذف کلیفرم‌های کل و گوارشی HPC در آب فیلتر شده تا ۱۰۰ درصد می‌رسد (شکل ۳-۲). عدم شست وشوی فیلتر شماره ۲ طبق پرداخت زمان به شکل شده، موجب بالارفتن آلودگی میکروبی در آب خروجی از این فیلتر شده است (شکل ۳-۴).

در مورد مواد شیمیایی استفاده شده، اختلافات سریع و صمیم مواد با آب و درجه حرارت می‌تواند بر عملکرد واحدهای انعقاد، لخته سازی و تشخیص موثر باشد. با اثرین درصد حذف کدورت و TOC نیز به وسیله فراوان انعقاد و لخته سازی بوده است (جدول ۲).

خاک رس، باکتری و مواد معدنی از مواد ایجاد کننده کدورت در آب می‌باشد و عمل انعقاد به طور معقول برای کنترل کدورت آب‌های مسطحی مورد استفاده قرار می‌گیرد که این فرآیند به حذف ذرات معلق نمی‌شود و هم زمان می‌تواند بخشی از کربن آلی آب را حذف کند. در شکل ۵ پروفسور O157 antigen H7 antigen

Control Latex

شکل ۶: آزمایش سربارگولپتویاسن برای حذف خانه آب اصفهان

فرآیندهای تصفیه، بر اساس یافته‌های کل هایی که در تحقیق ۴، مربوط به فصل نابسامان به عنوان پدیده بسیاری را برای کیفیت آب خروجی، مشاهده می‌شود. از این طریق می‌توان از تحقیق خانه در حد اکثر ۳ کلین در هر میلی لیتر آب بوده و در فصل زمستان به عنوان ناپایدار، در آب خروجی از تحقیق خانه به صرف رسیده است. عمل میزان بیش تر بودن هتروتوپ فا در فصل نابسامان در آب ورودی نسبت به آبکری، ناشی از عدم لایه‌ای تولید تئیه انتقال آب خام به طول ۸ کیلومتر از آبکری تا ورودی تصفیه خانه، دیگر کم در دست‌های فصل نابسامان و وجود فرصت و دمای کافی برای رشد و تکثیر کلیفرم‌ها می‌باشد.

در سال ۲۰۰۸ برای سنجش مراحل تصفیه در کشور Siebel سوپرس حد مولفه باکتری های هتروتوپ را در هر میلی لیتر آب بیشتر از تصفیه ۲۰ ٪ کلی قنیف نموده و ۱ تا ۲ درصد از آن‌ها را دارد فاکتورهای احتمالی عفونت زاگشکره K HK ردی چک است (۶). در سال ۲۰۰۴ Lechevallierی کشف کرد که این تحقیق خانه آب در ایالات متحده آمریکا کارایی حذف دراز را در واحدهای تصفیه خانه درجه بندی نموده، و به تغییرذیدری قابل ملاحظهٔ کارایی حذف ارگاکتین‌ها نظر کلیفرم‌ها دست پیدا کرده است (۱۰). در سال ۲۰۰۲ Nola در یک تحقیق...
عکس تصویری از شماتیک تغییرات کدکشت و TOC در واحد‌های مختلف تصفیه‌خانه آب اصفهان. شامل: 1- اثر آنالیز مقایسه‌ای با میانگین (Threshold)، 2- نمودارهای کنترل میزان TOC در واحد‌های مختلف تصفیه‌خانه آب اصفهان. شامل: 1- اثر آنالیز مقایسه‌ای با میانگین (Threshold)
شیماره‌ی کیفیت‌های کل و گوارشی....

یافته‌های این مطالعه وجود سویه بیماری زای را در لجن حضوری‌هایی که مشاهده شد، عدم وجود این سویه در آب خروجی تصفیه‌خانه حاکی از آن است که

فرایندهای موجود در واکنش‌های تصفیه‌خانه قادر به حذف این باکتری بیماری‌زا از رسیدن به مراحل

انتهایی تصفیه‌خانه مثل فیلترها و واحد کنترل‌زناها به یک‌دیگر.

روش ایمنولوژیک نیز وجود این آلودگی را با نتایج تا مورد

تعداد کلیفرم های کل و گوارشی و HPC موجود در آب

از محل برداشت آب از رودخانه (سد چم آسمان) تا آب تصفیه‌شده خروجی تصفیه‌خانه روند توزیع داشته است که

نشان دهنده کارایی واحدهای مختلف تصفیه‌خانه در کاهش

بار میکروبی موجود در آب ورودی بوده است.

علی‌العملی، رادمان، نامنقول و یک‌دیگری از تصفیه‌خانه مناسب و برخی از فیلترها در حدف کلیفرم‌ها را

می‌توان به عواملی چون عملکرد، توانایی وفرایندهای ته تئیزی و فیلتراسیون در براکی از دوره‌های بی‌هره برداری، شرایط آب و

هوایی و کیفیت آب روی

می‌توان با در این جهت، دفع آب از حضوری‌هایی که مشاهده شد، عدم وجود این سویه در آب

کلیفرم های کل و گوارشی و HPC موجود در آب

از محل برداشت آب از رودخانه (سد چم آسمان) تا آب تصفیه‌شده خروجی تصفیه‌خانه روند توزیع داشته است که

نشان دهنده کارایی واحدهای مختلف تصفیه‌خانه در کاهش

بار میکروبی موجود در آب ورودی بوده است.

پیشنهاد می‌شود منابع ای‌آیندی که احتمال وجود

در آنها وجود دارد، در حضور آب آب ورودی زای های کلیفرم H7 E.coli O157: H7

روش‌هایی یک‌دیگری رود شناسایی و به‌صورت شونده، تا از ورود آب

باکتری کلیفرم‌زای را به تصفیه‌خانه آب اصفهان پیشگیری شود.

شکر و قدردانی

این تحقیق با استفاده از گرانت‌های شرکت آب و

فاضلاب اصفهان با استناد به طرح تحقیقاتی شماره 88/17499 مصوبه شورای تحقیقاتی این شرکت انجام شده است. به‌طوری‌که

از ترکیب‌های ماهی‌مانند، کارشانسی و ناظری طرح

مدیر و کارشناسان تصفیه‌خانه آب اصفهان، مدیر و کلبه

کارشناسان آزمایشگاه مرکزی شرکت (بخش میکروبیولوژی).

تشکر و قدردانی می‌گردد.

رادیواکتوئیو با رنگ‌های فلوئورسانس در انتهای ۵/۳ با MRI

علاقه‌گذاری می‌شود و امکان کنترل بیوپتی محصول

را بدن جداسازی آنها در روش‌های الکتروفورز در زل آگاز Ya ژل پلی آکریل امید آبی (۲).

Real time PCR

یک مورد به وسیله

PCR

در شکل ۷ نمونه مثبت در روش آگلوبیناسیون را تا نایبی کرد.

در این تحقیق آزمایش‌های انجمد شده با وسیله

PCR

در شکل ۷ نمونه با رنگ‌های مشخص شده در شکل دیگر

و هر کدام از منحنی‌ها با رنگ‌های خود قابل تشخیص است.

در این شکل خط پایه CT تفاوت بین نمونه‌های مثبت و

منفی را نشان می‌دهد. در مورور افراد تعداد سیکل‌ها و در

محور عمدی فلوئورسانس سطح مشخص سوده است.

شکل خط پایه CT نشان می‌دهد که می‌توان از

لجن‌های دفع شده از حضوری‌هایی که مشاهده شد، عدم وجود

در این تحقیق با استفاده از گرانت‌های شرکت آب و

فاضلاب اصفهان با استناد به طرح تحقیقاتی شماره 88/17499 مصوبه شورای تحقیقاتی این شرکت انجام شده است. به‌طوری‌که

از ترکیب‌های ماهی‌مانند، کارشانسی و ناظری طرح

مدیر و کارشناسان تصفیه‌خانه آب اصفهان، مدیر و کلبه

کارشناسان آزمایشگاه مرکزی شرکت (بخش میکروبیولوژی).

تشکر و قدردانی می‌گردد.

گزارش تحقیق و کمیت سنجی بک Real time PCR

گزارش گر فلوئورسانس است که این سیستم‌ها مانند آن

محصول کی سنجی PCR محصول آزمایشی و کمیت سنجی

آستانه‌ای می‌باشد. درجه و صورت پایه DNA زنومی بیشتر،

محصول جمع شده در واکنش PCR روی تکثیف داده

می‌شود و ارزش CT پایین‌تر خواهد بود. ارزش

برای CT با ۴۰ با بالاتر به معنی افزایش نیست و این ارزش در محاسبات

افزوده نمی‌شود (۴).
Identification of Total and Fecal Coliforms and Heterotrophic to Microbiological Method and E.coli O157:H7 to Immunological, and Real Time PCR Methods in Isfahan Water Treatment Plant

Atabakhsh P.¹, *Amin M.M.², Mortazavi H.¹, Yaran M.³, Akhavan Sepahi A.⁴, Nouhi A.⁴, Jalali M.⁵
¹Isfahan Water and Sewage Company, Isfahan, Iran
²Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
³Infectious Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
⁴Department of Basic Sciences, Science and Research Branch, Islamic Azad University of Tehran, Tehran, Iran
⁵Department of Nutrition School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

Received; 10 August 2010 Accepted; 3 November 2010

ABSTRACT

Backgrounds and Objectives: Total and Fecal coliforms (TC and FC), heterotrophic plate count (HPC), were counted by microbiological method and E.coli O157:H7 were detected through immunological and Real time PCR methods in water intake and all of units of Isfahan water treatment plant (IWTP).

Materials and Methods: The microbial profile including TC, FC, and HPC, were monitored and turbidity and total organic carbon were analyzed in 8 locations of water intake, and unit operation and processes of IWTP, including, inlet, sedimentation, ozonation, and filtration and finished water. Immunological method through anti-serum kits and molecular method of RT-PCR were used to detect E.coli O157:H7 in the 8 locations and also the sludge of the sedimentation basin and filters backwash water of IWTP.

Results: Survival of E.coli O157:H7 in sludge sample of sedimentation basin was indicated by formation of agglutination particles in immunological method and through indicator probes in the RT-PCR method. However, E.coli O157:H7 was not detected in water samples of other units of IWTP. The removal percent of TC, FC, and HPC were: 59.5, 49, and 54.8 % in sedimentation basin; 66, 45.8, and 57 % in ozonation; 66, 45.8, and 57 % in ozonation; 98.8, 98, and 78.8 in the filtration; and 96, 100, 91% in disinfection, respectively.

Conclusion: This study approved the existence of the pathogenic coliform, E.coli O157:H7 in the sludge of sedimentation basin. Absent of E.coli O157:H7 in the finished water indicates that the existing units of IWTP could eliminate these pathogenic bacteria, before reaching the final units of the plant, including the filters and disinfection.

Key words: Total coliform, Fecal coliform, HPC, E.coli O157:H7, Real time PCR

*Corresponding Author: amin@hlth.mui.ac.ir
Tel: +98 311 7922686 Fax: +98 311 6682059