بررسی قابلیت حذف آرسنیک از آب با استفاده از فرااینده انعقاد و شناورسازی با هوای محلول

فردوس کرر مصطفی‌پور، ادرس بذرافشان: حسن کمالی
ed_bazrafshan@yahoo.com

تویستنده مصول: زاهدان، میدان مشاهر، دانشگاه علوم پزشکی زاهدان، دانشکده بهداشت، گروه بهداشت محیط.

دریافت: ۱۰/۹۸/۲۰۰۵

چکیده
زمینه هدف: آرسنیک یکی از سمی ترین و خطرناک ترین عنصر موجود در آب آبادی‌سازی شناخته می‌شود که با توجه به کاستر کاربرد آن در کشاورزی، دامداری، پزشکی، صنعت و غیره شرایط ورود آن به منابع آب و محیط زیست سیاسه‌سازی شده است. آرسنیک یک ماده سمی، تجمیع و توزیع متقابل و متناسبات مختلف را ارتباطی می‌دهد، ایجاد شرایط مخرب یا بلاهای آرسنیک در آب آبادی‌سازی و سرطان‌های SH کبیده، حفره‌های مغزی، سینه، پوست، مثانه و کلیه در مردان و زنان و بروینی در مردان را مشخص نموده است. تحقیق حاضر به هدف امکان سنجی حذف آرسنیک از آب با استفاده از فرااینده شناورسازی با هوای محلول انجام یافت.

روش بررسی: در تحقیق حاضر ابتدا به منظور تثبیت شرایط بهینه حذف آرسنیک در روش شناورسازی با هوای محلول، مقدار بهینه موارد منعکس کننده با توجه به شرایط خاص حاکم بر فرآیند نقش تغییر دارد و در ادامه پس از بهره‌برداری نسبی و تغییر تغییرات در فاصله‌ای از آب و سیستم مورد بررسی قرار گرفت. در پایان حذف حذف به تاثیر انعکاس‌های مختلف شناسایی و سنجش شناورساز و فشار اشباع سازی مورد بررسی قرار گرفت. در پایان غلظت آرسنیک بالا مانده به روش در این الگوریتم نمودار تغییر شد. پایان حذف به تاثیر انعکاس‌های مثلثی و پدیداری مشابه شناورسازی در حذف این عنصر، پلی آلومنیوم کارکرد و در مبحث بعدی سولفات آلومنیوم است. در غلظت اولیه آرسنیک معادل 200 میکروگرم در لیتر حداکثر روانگاه جعفر خ.ه (۴/۴) حاصل شد.

نتیجه گیری: نتایج حاصل از این مطالعه نشان داد که روش شناورسازی با هوای محلول همراه با کاربرد منعکسکننده پلی آلومنیوم کارکرد از کارایی بالایی در حذف آرسنیک از آب حتی در غلظت‌های زاید برخوردار بوته و پایین‌تر با توجه به مخاطرات فراوان ناشی از حضور این عنصر در آب شرب، می‌تواند به عنوان یک گزینه مناسب حذف می‌تواند بر مبنای منحصراً صنعت آب قرار گیرد. و اگر کلیدی آرسنیک، شناورسازی با هوای محلول، انعقاد و لخته سازی، تصفیه آب

1- دکتری بهداشت محیط، استادیار مرکز تحقیقات ارتقای سلامت دانشگاه علوم پزشکی زاهدان
2- دکتری بهداشت محیط، استادیار مرکز تحقیقات ارتقای سلامت دانشگاه علوم پزشکی زاهدان
3- کارشناس ارشد بهداشت محیط، عضو هیئت علمی مرکز تحقیقات ارتقای سلامت دانشگاه علوم پزشکی زاهدان
مقدمه

آرسنیک از جمله عنصرهای منحصربهفردی است که در ترکیبات مختلف پوسته کل زیمن وجود داشته و غلظت آن در گسترده 5-20 ppm است (1). این ماده در کشاورزی،دامداری و پرورش، اکثراً صحت و ضرر کاربردی داشته و از طریق مانند طبیعی، یا فعالیت‌های انسانی به محیط زیست وارد گردیده و آلفا و بETA ایزوتیپ مواد را موجب می‌شود (2).

อบ آن به عنوان یکی از راه‌های مهم انتقال آرسنیک در محیط مطرح است (3). آلفا و بETA ایزوتیپ به آرسنیک با بسیاری از گونه‌های جهان از جمله آرازینات، بکلرین و نیکل در این سطح با عنصر آب زیر زمین بنگلادش و هند در گسترده 2000-20000 میکروگرم در لیتر بوده است (4).

در ایران نیز مواردی از آلودگی در استان‌های خراسان و کردستان گزارش شده است. بر اساس مطالعات مسافری و همکاران غلظت آرسنیک در آب آشامیدنی در استان 10 روستا در استان کردستان بین غلظت مجاز بوده و حدود تغییرات بین 500 تا میکروگرم در لیتر غلظت شده است (5). سازمان واکنش محیط زیست آمریکا و سازمان جهانی بهداشت بر میزان مطالعات اپیدمیولوژیکی، کاهش مقدار مجاز آرسنیک در آب آشامیدنی در 10 میکروگرم در لیتر را مقدار نهایی قرار داده (6).

ناز طیب‌پور سطح زاپی آرسنیک در سیستم گوارشی انسان جلوگیری به عمل آورده و از طریق از عوارض کبدی، ریوی، کلیه و اردر پوست موجب تبدیل و بی‌کاری می‌شود (7). این عصاره از طریق بروز، سیستم تنسی و گوارشی جذب به‌دنبال شده و این می‌تواند به صورت وسیعی در جریان خون انتقال شود. مطالعات اپیدمیولوژیکی انجام شده اثبات سرطان زاپی آرسنیک را که از طریق نفس و خوران وارد به بدن انسان می‌شود به اثبات رسیده است. این خطرات به عاملی از قبل طول مدت مواجهه و راه ورود آرسنیک به بدن، نوع و منبع آلودگی ممکن است بر بحری از اندام‌های بدن نظیر اندازه‌های‌یکن و سایر جک‌های انسان به وسیله غلظت pH کردن و نتایج حاصل حاکی از آن است که در شرایط
یپه pH معال 11-10، راندمان حذف 100/به است (7).
می‌توان به اعماق یک سانی متری سطح آب درون طرف‌های pH (جار دردشت‌زارش و کدورت و pH نشانگر شد. pH سنجش کدورت از زمانی از اواخر 82 متر مدل CGK اکثر استرالیا و سنجش با دستگاه pH محلول مرد بررسی قرار داده که حداکثر راندمان حذف به ترتیب برای این درصد به‌طور متوسط تغییر وارد حذف شده در نتیجه انجام اثر مانند سردرد و نری آب های حاوی مقدار بالای جلبک و کدورت پایین از مرا ورزیزی برخوردار به جهت حذف موتر ارسنیکی، می‌تواند در زمین‌شناسی یا در درست‌ساخته مصرف که از دو کارایی برخوردار باشد. با توجه به وجود مشکل ارسنیکی در آب آب‌میوه‌استر نمایی حاضر بررسی کردن حذف ارسنیکی منجر به افزایش انسدادزی و انجام پذیرفته.

مواد و روش

تحقیق حاضر در محل آزمایشگاه شیمی آب و فاضلاب دانشکده بهداشت اصفهان و دانشکده بهداشت دانشگاه علوم پزشکی راه‌اندازی در سال‌های 1387-88 انجام پذیرفته. در تمامی محله‌های آزمایش به منظور کنترل دیقیق شرایط از آلیه مافی دی اسد pH مفطر دوباره تغییرات استفاده شد. جهت تنظیم pH اسید کاریکسیس و هیدروکسید مسید 2001 نرم‌افزار استفاده شد. در آلیه مفطر جای به یک حس‌سنجین شرایط بهره‌برداری انجام اتفاق صورت گرفت، متفاوت‌های کدورت اولیه pH غلطه و نوع ماده، منجر به مصرف همکاری سه‌پرسی قرار گرفتند. سوسپنژ کدورت به استفاده از پودر کانالین به روش استوته و اکثر حتی گردن. به منظور انجام استفاده مناسب در فراویدی شناورسازی با هوا محصول، حدود 280 دوباره دیقیق به مدت 20 دیقیق استفاده شد. در پایان به نتیجه شرایط سکون برای مدت 30 دیقیق، امکان تحقیق لخته فراهم گردید.
بررسی اثر شرایط بهینه (جدول 1) بر راندمان حذف آرسنیک (در غلظت‌های 50 و 200 میکروگرم در لیتر) بیانگر آن است که بهترین معادله‌مورد استفاده ترکیب الیومنیوم کلراید و در مخلوط بعدی سولفات الیومنیوم است. غلظت از آرسنیک که در دستگاه شناورسازی با هواي محلول با حداکثر کارایی حذف شده است، غلظت 200 میکروگرم در لیتر بوده و شرایط بهینه حذف آرسنیک برابر این منظور در جدول 2 اورده شده است. نتایی منگری‌های زمان لخته سازی (5 تا 20 دقیقه) زمان شناورسازی (5 تا 20 دقیقه) و فشار اشعاع سازی (3 تا 4 تمسفر) بر راندمان حذف آرسنیک تحت شرایط بهینه (مطالب جدول 2) در سه‌گیاه 1 تا 4 نمایش داده شده است. هم‌چنین در جدول 3 میانگین غلظت الیومنیوم باقی مانده در این فرآیند در هنگام حذف آرسنیک اورده شده است. نتایی موجود در جدول 3 نشان می‌دهد که در هنگام حذف آرسنیک با استفاده از معادله‌مورد، الیومنیوم کارایی‌باید، با انفراش زمان لخته‌سازی از 5 به 20 دقیقه، میزان الیومنیوم باقی مانده ۵/۳ درصد کاهش می‌یابد.

بحث و نتیجه‌گیری

مطالعات انجام شده نشان داد که در روش‌هایی نظیره مرسوم، فرآیند انقیحه‌بهاً به‌نک‌های احتمال در مقایسه با نمک‌های الیومنیوم می‌تواند منتهی به نتایی بهتری در حذف آرسنیکی گردد (15). تفاوت در نتایی حاصل شاید به دلیل مکانیسم‌های متوازن تشکیل‌دهنده روش‌های

<table>
<thead>
<tr>
<th>نوع معادله‌مورد</th>
<th>شرایط بهینه در کدورت پایین</th>
<th>شرایط بهینه در کدورت زیاد</th>
</tr>
</thead>
<tbody>
<tr>
<td>كدورت اولیه (NTU) (0.05, 0.20, 0.50, 0.75)</td>
<td>غلظت: 50</td>
<td>غلظت: 50</td>
</tr>
<tr>
<td>کدورت اولیه (NTU) (0.05, 0.20, 0.50, 0.75)</td>
<td>غلظت: 50</td>
<td>غلظت: 50</td>
</tr>
</tbody>
</table>

جدول 1: شرایط بهینه حاصل از آزمایش‌ها

مخلوط ۱۰ سانتی‌متری تحت فشار برای اشبعا سازی آب با هوا (3) مخلوط زمین ۴ سانتی‌متری (2) همزمان با استوانه ۶ سانتی‌متری از گنبد بلکسی کلاسی و به ارتفاع حدود ۷۵ سانتی‌متر و حجم تقریبی ۲ لیتر (۲) شیری نمونه برداری (۷) شلنگ‌ها (۸) شلنگ خروجی از مخلوط اشبعا سازی به استوانه (۹) شلنگ سیکل برگشتی (۱۰) میز کار است. (شکل 1).
جدول ۳ میانگین آلومینوم باقی مانده (mg/L) در فشار اشتعال سازی ۳ تا ۴/۵انسی در هگام حذف آرسنیک

<table>
<thead>
<tr>
<th>زمان شناور سازی، دقیقه</th>
<th>زمان لحظه سازی، دقیقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰۵</td>
<td>۰۹</td>
</tr>
<tr>
<td>۰۵۰۰</td>
<td>۱۰۰۲</td>
</tr>
<tr>
<td>۱۰۰۴</td>
<td>۱۱۰۶</td>
</tr>
</tbody>
</table>

زمان شناور سازی مطلوب در گسترده ۵-۵ دقیقه است (۵). نتایج مطالعات حاضر نشان داد که در فشارهای اشتعال سازی مختلف، تأثیر آلومینوم باقی مانده متفاوت است. شکل های ۱ تا ۴ نشان می دهد که در فشار اشتعال سازی ۳ تا ۴/۵ انسرفر، آلومینوم باقی مانده رفتار متفاوتی در زمان های شناور سازی مختلف از خود نشان می دهد. نتایج حاکیست که آلومینوم باقی مانده به صورت خطی با افزایش زمان لحظه سازی کاهش یافته و افزایش نداشته است و شکل های مربوط به صورت زیگزاگ درآمده است.

نتیجه گرفته از مطالعات باقی مانده در آپ ناشی از تغییرات شرایط لحظه از نظر اندوزه، پایان داد و اثر متقابلی بین حباب و لحظه است. این تحقیقات و آزمایشات انجام شده موجب یافته است که زمان شناور سازی مطلوب به شدت لازم است.

الف: حفظ سازی پار دره
ب: تولید ذرات هیدروفوریک (۲۱)

در حال حاضر، جهت حفظ آرسنیک در شرایط هسته پاتی های جزیره زمین، آلومینوم کارایی دارد که می تواند با حمایت pH ۷ است. کارایی بالای آلومینوم به منظور حذف آرسنیک شود و در مقایسه با دو محققان دیگر دارای بالاترین راندمان حذف آرسنیک است. مطالعاتی که به وسیله مرکز تحقیقات آبی انگلستان انجام شد، نشان داد که این محققان، آلومینوم کارایی می‌تواند حذف موثر رگن، کدورت و چربی را به دنبال داشته باشند (۱۵). نتایج حاکی از این مطالعه حاکی از آن است که آلومینوم کارایی می‌تواند تأثیر زیادی بر غلظت آرسنیک باقی مانده در آب داشته باشد. مطالعات نشان دادند که آلومینوم باقی مانده در آب داشته باشد.
زمان لخته سازی را 10-5 دقیقه (22) و حتی 5 دقیقه (25) ذکر کرده اند. مطالعه حاضر نشان داد که بهترین زمان لخته سازی در زمان شاورزاپری مابین 5-20 دقیقه در فشار اشباع سازی 3 انسفر (شکل 1)، و 5-20 دقیقه در فشار اشباع سازی 5 انسفر (شکل 2) است. Malley تحقیق گرفتند که زمان لخته سازی به طور قابل ملاحظه ای عملکرد فرآیند شاور سازی با هواي محول را و باقی مانده کمتر آرسنیک در آب می گردد. بیدر عناصه که افزایش زمان آرسنیک در آب سبب بهبود شرایط جهت حدف آرسنیک می شود. ذلیل بر این امر شناخته می شود که حدود یون آرسنیک در چسبیدن لخته حیاب شده و پایداری این چسبندگی را موجب می شود.

پایداری مابین ذرات و حیاب می تواند تحت تأثیر اثر متقابل بار الکتریکی حیاب - ذره و اثر هیدرولیک به دلیل آب پیوندی موجود در سطح ذرات باشد (15). مطالعات انجام شده، بهترین
كل روش شناور سازی با هواي محلول مي تواند آرسنيک را به ترین زمان شناورسازی چيته دستيابيي به كم ترين غلظت باقي مانده آرسنيک در آب، 10 و 20 دقیقه در فشار اشبع سازی 13 امسف، 15 و 15 دقیقه در فشار اشبع سازی 3/5 امسف، 15 دقیقه در فشار اشبع سازی 4 امسف و 15 دقیقه در فشار اشبع سازی 4 امسف است (شکل هاي 5,6).

همچنین نتایج مطالعه حاضر نشان داد که فشار اشبع سازی 4 امسف برای ترين فشار جهت حذف آرسنيک از آب است (شکل 3) كه به دليل اثر خيلي زياد آن بر آرسنيک باقي مانده در طول زمان های شناور سازی مناسب. در زمان شناور سازی 15 دقیقه اثر فشار اشبع سازی تا حدودی كم ترين از ديدگي زمان های شناورسازی است. در روش هاي بالاتر، حیوان های کچک تر توليد مي شوند و فشار هاي بيش از 15 امسف اثر كمی بر اندامه ذرات دارند (21). Edzwald و Malley شناور سازی با هواي محلول هتنگمی مي تواند كارايي خوبي داشته باشد كه حجم حیوان ها بيره شده توسط حجم ذرات باشد (15 و 22). نتایج مطالعه حاضر نشان داد که در فشار اشبع سازی 3 و 4/5 امسف، زمان هاي لخته سازي 0 و 15 دقیقه و در فشار اشبع سازی 4 امسف زمان هاي لخته سازي 10 و 20 دقیقه، كارايي حدف آرسنيک را تحت تاثير قرار مي دهد. در
13. Kiuru HJ. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF) in turbulent flow condition. Wat Sci
Survey of Arsenic Removal from Water by Coagulation and Dissolved Air Floatation Method

Kord Mostafapour F., *Bazrafshan E., Kamani H.
Department of Health Promotion Research Center, Zahedan University of Medical Sciences, Sistan Balouchestan, Iran

Received; 1 August 2010 Accepted; 27 October 2010

ABSTRACT
Backgrounds and Objectives: Arsenic is one of the most toxic and dangerous elements in drinking water that with increase in its application in agriculture, development of applications in agriculture, livestock, medicine, industry and other cases its entry to water resources and environment is much easier. Arsenic is a poisonous, cumulative substance and inhibitor of SH group enzymes and various studies revealed a significant correlation between high concentrations of arsenic in drinking water and liver cancer, nasal cavity cancer, lungs, skin, bladder and kidney cancer in men and women and prostate and liver in men. The aim of this was survey of arsenic removed from water using dissolved air floatation mechanism.

Materials and Methods: At present study in first step for determination best conditions of arsenic removal by dissolved air floatation method, optimum amount of coagulants determined and then synthetic solution of arsenic (50, 100 and 200 µg/L) prepared using sodium arsenate. In third step arsenic removal efficiency under various variables such as arsenic concentration, flocculation and floatation time and saturation pressure were analyzed. Finally residual arsenic concentration was determined by the silver diethyl dithiocarbamate method.

Results: Effect of optimum condition on arsenic removal efficiency at various initial concentration 50, 100 and 200 µg/L showed that the best coagulant for removal of arsenic is polyaluminum chloride. Also maximum efficiency (99.4%) was obtained in initial concentration equal 200 µg/L.

Conclusion: It can be concluded that dissolved air floatation method with poly aluminum chloride as coagulant have high efficiency for arsenic removal even at high concentrations and therefore this method can be used for removal of arsenic from water as a suitable and safe option.

Key words: Arsenic, Dissolved air floatation, Coagulation and flocculation, Water treatment