بررسی عملکرد نانوپیونیراسیون در حذف کروم ۶ ظرفیتی از آب های حاوی سولفات

سید باقر مرتضوی، بهرام باریک بیان، سید غلامرضا موسوی
mortazav@modares.ac.ir
نویسنده مسئول: بهرام باریک بیان.

چكیده
زمینه و هدف: وضعیت زمین شناسی و با آلودگی های حاصل دست دست پرورش می‌تواند ظرفیت کروم ۶ و برخی دیگر از املاح مانند سولفات را در آب های زیرزمینی به بخش از جذاکر مجار (۲۵۰ μg/L) بررساند. از آن جایی که این ترکیبات خطورهای مهمی نیز در سرتاسر جهان وجود دارند، از دیگر موثرهای کنم‌بندی کروم و ترسیم این کم‌بندی در شرایط مختلف، للأد نوردیس قهکاری نانو پیونیراسیون به عنوان یک روش ایمیلارکنتکه در حذف کروم ۶ ظرفیتی هم زمان با سولفات به عنوان آلاینده آب تداخل کننده در فرآیندهای غلیظی در رسانه به استانداردهای آب اشتادبندی است. روشهای بررسی: به منظور بررسی نانوپیونیراسیون فشار pH و نوع کانیون و آنیون همگون در میان حذف کروم ۶ و ظرفیتی، غلظت های ۰/۱ و ۰/۵ mg/L و ۱۰۰-۱۰۰۰ سولفات (مقدارهای غلظتی در آب) تحت محدوده فشار نانوپیونیراسیون به تعداد ۱۰ بار انتخاب گردید. آزمایش‌ها با استفاده از نانو کارور سدیم، سولفات سدیم، کلرور ۴ آب کروم همه ظرفیتی و دیگر کمی با نسبت ندامتگی ساخت شرکت مکوم و با درجه خلائی بالای ۹۹% و طبق دستور العمل موجود در کتاب روش های استانداردی برای آزمایشات آب و فاضلاب انجام شد. نتایج: با آزمایش غلظت، بالرایزاسیون غلظتی و ترازیش بار در مقدار غلظت و نسبت به رشد رامدن حذف ۰/۵ با معادل ۹۵% دیده می‌شود. با افزایش غلظت، بالرایزاسیون غلظتی و ترازیش بار در مقدار غلظت و نسبت به رشد رامدن حذف ۰/۵ با معادل ۹۸% افزایش داد. ولی حذف کروم ۶ ظرفیتی وابسته به غلظت یکسان و غلظت به فشار در سیستم است. هم چنین افزایش جامدیت کاری در آب باعث حذف کامل کروم ۶ کرده و بهترین رامدن حذف به میزان ۹۶% و در pH میزان ۹۹% خصوصاً در pH بالا خیلی و میزان بهبودی را دارد. تیتر گری: تحقیق نانو داده که نوع فیبرتراسیون مهم را یافته سبب بهبود برداری و سرعت ترین اثر را در عملکرد نانو فیلتر داشته است. براساس pH و دست آمده نانو پیونیراسیون روش مناسبی در حذف هم زمان کروم و سولفات از آب است.
واژگان کلیدی: نانوپیونیراسیون، کروم ۶ ظرفیتی، سولفات.
مقدمه

کروم به عنوان یک اکسی آنیون همرودپیشرفتی از مسئله‌ای است که امروزه مصارف بسیار زیادی در سیاست مصرفی می‌باشد. چون دیابت، آب فیزیکی، ناسی، و دیگر بروزهای مصرفی دارد. بخشی از مداخل آب ژوئیزیک که نام انگلیسی آب آشامیدنی هستند به دلیل وضعیت زیستی شناسی منطقه بستگی دارد و وجود بودن آب در زمین استحکام‌های زیمین در مصرف کروم در حالت 4 ترکیبی به هم‌مراد سوالاتی می‌باشد. بنابراین سوالاتی ویژه، تحقیقاتی از این ایندیکاسیون‌های اثرات بهداشتی که اصلی مدل تحقیق و درستی بودن داد. در می‌باشد.

حدی که غلظت فوق ترکیبات بهبود یافته باعث می‌شود که زیست خطرات عمدی ای نظیر سرطان، به پوست و یا میزان جرم ناشی از مصرف کروم 3.4 ترکیبی می‌توان در غلظت 50 μg/L به واقعیت بدیهی است. به طوری که امروزه می‌توان غلظت را به حدود 50% به تغییر برتریات بهبودی شناسی است. در تحقیقاتی آب 4.9 ترکیبی می‌توان مقدار 200 μg/L سومین آآن که به دلیل داده‌های واید است. در می‌باشد.

Quantity of γ-aminobutyric acid (GABA) was determined using a high performance liquid chromatography (HPLC) method. The results showed that the concentration of GABA in the brain tissue of the tested animals was significantly higher than that of the control group. This finding is consistent with previous studies, which have reported a role for GABA in the regulation of stress and anxiety-related behavior. However, further research is needed to investigate the mechanisms underlying the observed differences in GABA levels between the two groups.

منبع: Elsevier, 2018
مواد و روش‌ها

این تحقیق با استفاده از یک سیستم نانوفیلتراسیون در مقیاس پایلوت به روش عبری یکباره (Once through) انجام گرفته است. زیرا به دلیل آفت غلظت در جریان برگشت و نشست املاح بر روی غشا، غلظت در محلول ورودی در روش برگشت کاهش محسوسی داشت. لذا برای اطمینان از یک کانستانت محول مقدار زیادی از محلول اولیه در محلول اولیه ماجرای ساخته می‌شود و لذا از گشت جریان خروجی به محلول ورودی خودداری می‌گردد. شکل 1 شماتیک از این پایلوت را نشان می‌دهد.

شکل 1: شماتیک از پایلوت نانوفیلتراسیون

1- مدول نانوفیلتراسیون 2- چرخه سنج 3- سنسور فشار سنج 4- حسگر فشار 5- خط جریان اب خروجی 6- محلول ورودی 7- خط جریان دورورز 8- فیلتر کارتریج
عملکرد نانو فیلم‌پوش‌های در حذف کروم....

نتایج حجم آب جمع‌آوری شده در واحد زمان t L/m²h
بر حسب میزان در حذف 3 غلظت و pH

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>نوع نانو‌فلام</th>
<th>دقت</th>
<th>میزان در حذف (فیلم پوش)</th>
<th>میزان در حذف (فیلم باز)</th>
</tr>
</thead>
<tbody>
<tr>
<td>عمق</td>
<td>شما.</td>
<td>76</td>
<td>500 mg/L</td>
<td>750 mg/L</td>
</tr>
<tr>
<td>90</td>
<td>طول (فیلم میکرو)</td>
<td>104</td>
<td>850 mg/L</td>
<td>850 mg/L</td>
</tr>
<tr>
<td>99</td>
<td>قطر (فیلم میکرو)</td>
<td>75</td>
<td>950 mg/L</td>
<td>950 mg/L</td>
</tr>
<tr>
<td>145</td>
<td>میزان جریان خروجی (فیلم وابسته به روز)</td>
<td>75</td>
<td>1000 mg/L</td>
<td>1000 mg/L</td>
</tr>
<tr>
<td>20/11</td>
<td>حذف کروم بهره‌برداری (فیلم وابسته به روز)</td>
<td>75</td>
<td>1100 mg/L</td>
<td>1100 mg/L</td>
</tr>
</tbody>
</table>

روش رنگ سنجی به کمک معرفی دنی فیل کاربازاید طول Unico MG 30 نانو‌فلام نوشتن سعت درک کننده استمال مواد مدل (UV/VI) و کروم 3 نانو‌فلام به دلیل استفاده از اکسید بنیکارکورن کروم (III) بر اساس سرم کروم می‌باشد. حذف در طول موج (Schimatzu model AAVG) این نانو‌فلام و سولفات نیز به روش کلیشتون سنجی (فیلم وابسته به روز) به مقدار 1 می‌باشد. pH

روش‌های استاندارد جهت انجام آزمایشات آب و فاضلات (۱۰) انجام پذیرفت. نظیم pH بر اساس کاربردیک و سود پیک (۲۲) انجام ترمیم و ساختمان pH نانو‌فلام نوشتن سعت درک کننده استمال مواد مدل (JENWAY 3505) انجام شد. کلیه آزمایشات ۲۴ ساعت تکرار و مانگین ایجاد گزارش شد. به منظور تغییر میزان درصد حذف آلاینده‌ها (فیلم وابسته به روز) ۱ میزان فلاکس عبوری (راطقه ۲) از معادلات زیر استفاده گردید.

\[
R(\%) = (1 - C(t)/C_0) \times 100
\]

\[
J_v = \frac{V_v}{A t}
\]

که در رابطه (۱) N از نانو‌فلام درصد حذف و C_0 و C_P به ترتیب نشان‌گر میزان درصد حذف و آن آلاینده در آب خروجی از غشا و در آب ورودی می‌باشد. V_P در رابطه (۲) N نشان‌گر فلاکس عبوری از غشا بر حسب ۱۸۴
بافر مرخشی و همکاران

رو به افزایش فلایکس عبوری در حذف کروم گرا در فلایکس عبوری محصول کروم با افزایش فشار، فلایکس عبوری برای محصول کروم می‌تواند در دو غلظت ۰/۰۵ و ۰/۱۰ میلی گرم در لیتر بیشتر از فلایکس عبوری برای محصول کروم ۳ تری‌فاتئی بوده است.

به طور مثال حذف‌کرکرک گرم ۶ تری‌فاتئی در غلظت ۲۱ و عبوری کروم ۳ تری‌فاتئی با همان حذف‌کرکرکرک ۱۷ L/m²-h غلظت حداکثر ۴۴ درصد کمتر از فلایکس عبوری از محصول کروم ۶ تری‌فاتئی است.

به طور مثال حذف‌کرکرکرک ۶۳ برای حذف کروم ۳ تری‌فاتئی (با غلظت ۱ mg/L در حضور ۴۰۰ mg/L سلولات در کلیه فشارها تغییرات محسوس مشاهده نشد به طوری که راندمان حذف کروم حدود ۹۸ درصد به دست آمد.

به طور مثال حذف‌کرکرکرک ۶۳ برای حذف کروم ۳ تری‌فاتئی (با غلظت ۱ mg/L در حضور ۴۰۰ mg/L سلولات در کلیه فشارها تغییرات محسوس مشاهده نشد به طوری که راندمان حذف کروم حدود ۹۸ درصد به دست آمد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.

پانه‌ای مرجوع به محصول کروم ۱۰/۰ میلی‌گرم در لیتر دارد.
عملکرد نانو فیلتراسیون در حذف کروم

شکل ۴: میزان فلایکس عبوری (L/m²h) با تغییرات فشار در غلظتهای مختلف کروم ۳ و ۶ فیلتر می‌باشد و نتایج داده شده از میزان متوسط کروم در زمان کروم در میزان ۱۰۰ میکروگرم/لیتر در فاز تاخیری می‌باشد و نتایج همان طور که ملاحظه می‌شود در فشار ۴ بار و هم چنین غلظت ۱۰۰ میلی‌گرم در لیتر سولفات و غلظت ۱/۱۰ میلی‌گرم در لیتر کروم در حالتی که آن را در حفظ کروم کروم با غلظت بالای ۰/۸۹٪ در غلظت ۵۰۰ mg/L (در غلظت ۵۰ mg/L) حذف کروم را مشاهده می‌نماییم.

در حالتی که در شرایط مشابه در زمینه کروم، ۲ فیلتر باشد میزان حذف کروم در غلظت‌های ۰/۱۱ و ۱/۵ mg/L و به میزان ۱۰۰٪/۸۹٪ است.

ولی با افزایش غلظت کروم و افزایش فشار تا ۴ بار راندمان حذف از ۹۸ درصد به ۹۸ درصد می‌رسد و تا فشار ۱۰ بار ثابت می‌ماند. شکل ۴ و ۵ نشان می‌دهد دست‌یابی حذف سولفات و کروم در حروف سولفات ۴ سولفات با غلظت‌های مختلف است. لذا در حروف کروم در توان به حرف دست‌یابی سولفات و کروم بالا (به بیش از ۹۸٪) در نانو فیلتر دست‌یافته. شکل ۴ و ۵ نشان می‌دهد آن اثر نمایان می‌شود.

شکل ۵: نتایج حذف غلظت‌های مختلف کروم ۶ فیلتر در حروف سولفات (محول سولفات) در غلظت ۴۰۰ میلی‌گرم در لیتر (ph)

pH

رتبه pH در محدوده ۱۰ تا ۲۵ درجه سانتی گراد (C=۰/۱) و (C=۰/۵).
شکل ۶: تأثیر فشار در حذف یون کلرور (مخلوط کلرور سدیم) با غلظت ۴۰۰ میلی گرم در لیتر در حضور غلظت های مختلف کروم ۶ ظرفیتی (میلی گرم در لیتر)

شکل ۷: تأثیر فشار در حذف غلظت های مختلف کروم ۶ ظرفیتی (میلی گرم در لیتر) در حضور کلرور (مخلوط کلرور سدیم) در غلظت ۴۰۰ میلی گرم در لیتر

شکل ۸: تأثیر افزایش غلظت سولفاتات سدیم (سولفاتات سدیم) در میزان حذف کروم ۶ ظرفیتی در فشار (بار) و غلظت منځر
بهره و نتیجه گیری

اثر فشار، غلظت و pH بر میزان حذف کروم ۶ و ۳-۶ غلظت بی‌طرفی هستند. در مورد تاثیر فشار بر دو کروم ۶ و ۳-۶ غلظت دو غلظت مختلف (شکل ۳) می‌توان استدلال نمود که به دلیل افزایش تریوکولوئسترایسکانی و همچنین افزایش دفع بی‌طرفی عمومی از میزان حذف کروم ۶ و ۳-۶ تأکید داده شده‌اند. در همان زمان با نسبت‌های مذکوری افزایش حذف میزان حذف کروم ۶ و ۳-۶ با دیگر بی‌طرفی و با افزایش فشار افزایش محسوسی نداشت. است. ولی در خصوص کروم ۶ و ۳-۶ میزان کروم چنین باید به افزایش گردند. افزایش تاثیر نداشته و رابطه معکوسی با دقت و داده جهد می‌شود که با استفاده از دیگر گلیفیکه افزایش حذف توم ۳-۶ همچنین متهم است که در این آزمایش با ۱۸ ته افتاده است. (تیک: این نتیجه$	extbf{CrO}_4^{2-}$ به محلول بروز و در غلظت pH، باعث افزایش حذف می‌شود که به دلیل افزایش حذف توجه و غلظت pH در برابر باعث تغییر pH می‌شود که به میزان تغییر pH در برابر باعث تغییر pH می‌شود که به میزان تغییر pH می‌sh
باقر مرتصوی و همکاران

احصار
از تحقیق هافیانی و همکاران. و طالب احمد و همکاران
مطالبت دارد (20 و 28). با توجه به اطلاعاتی که در آن درﻢ
نیتیجه گرفت که نوع آیون همراه کروم در میزان خفف
کروم موتر است. به طوری که با افزایش گل‌کردن آیون‌های موجود
در آب به ویژه سولفات‌های کروم (۶) می‌تواند تا ۱۰٠٪ افزایش
پایید. بنابراین مشخص می‌شود که استفاده از گل‌کردن نانوی
روش مناسبی جهت کاهش شربت هم زمان سولفات‌ها و کروم از میان آب
جزء نانوی است. در این مطالعه نانوی فیلتراسیون بسته به اثر مکانیک
دست بايبه فلاکس بايد در میزان شار کاری کم و در نتیجه
به‌طور برابر ارزان‌تر و آسان‌تر است (13 و 14).

تشکر و قدردانی

بدن‌سازی از دانشگاه تربیت مدرس به خاطر حمایت، های
مالي این تحقیق تشکر و قدردانی می‌گردد.

مراجع

Survey of Nano filtration Performance for Hexavalent Chromium Removal from Water Containing Sulfate

*Mortazavi B., Barikbin B., Moussavi Gh.R.
Department of Environmental Health, Faculty of Medical Sciences, Tarbiat modares University, Tehran, Iran

Received 5 April 2010; Accepted 16 Jun 2010

ABSTRACT

Backgrounds and Objectives: Geological situation and/or anthropogenic contamination contain an increased concentration of ions such as hexavalent chromium as well as some other dissolved components such as sulfate in the upper of the established MCLs (50µg/L). In this paper, simultaneous removal of Cr (VI) and sulfate from water was investigated using nanofiltration as a promising method for reaching drinking water standards.

Materials and Methods: For varying pressure, pH, anion and cation solution effect, Sulfate and Cr (VI) concentration which have chosen were levels found in drinking water sources (Cr=0.1-0.5mg/L) and (SO₄²⁻ = 100-800mg/L). Experiments were performed using NaCl, Na₂SO₄, K₂Cr₂O₇ and anhydrous CrCl₃·6H₂O which prepared with de mineralized water on procedure detailed in standard methods. All salts were purchased from Merck Corporation with purity over 99%.

Results: The results for hexavalent chromium experiments showed that when the concentration decreases, the chromate anions were given a better retention to 4 bars (96%). But when the concentration increases, concentration polarization led to increased removal of Cr (VI) (98%). For Cr (III) the influences of the ionic strength as well as the concentrations were strongly dependant on rejection but operating pressure were found weak. In addition, with increasing total dissolved solids, perfect rejection of chromium was seen. The effect of pH showed that better retention was obtained at natural and basic pH.

Conclusion: This study indicates that the nature of anions and cations, driven pressure and pH have significant effect on nano filtration operation. Research findings show that it seems nano filtration is a very good promising method of simultaneous removal of Cr (VI) and sulfate from water.

Key words: Nanofiltration, Hexavalent chromium, Sulfate, Retention