امکان سنحی استفاده از دانه‌های مورینگا پرگرینا در مقایسه با آلوم و پلی‌آمینیم کلراید در تصفیه فاضلاب

حسین بازدار ۱، وحید یزدانی ۲، علیرضا رحمانی ۳، سهیل مهاجری ۴، احسان علی‌پهلوی ۵

نویسندگان سرشناس: همدان، دانشگاه بوغوزی، دانشکده کشاورزی، گروه شیمی آب

دریافت: ۲/۱/۹۹

بدریش:۷۸/۸۸

چکیده

زمینه و هدف: در پیسنار در نقاط شکل و نیمه شکل جهان روان‌های شهید به عنوان یکی از منابع آب قابل اعتماد و با ارزش محروم است. تصفیه فاضلاب شهرها، ضمن افزایش حیاتی زیست، سبب بهره‌برداری از فاضلاب، استحصال و توزیع آب مصرفی می‌شود. هدف از این تحقیق ارزیابی امکان استفاده از پودر دانه‌های پرگرینا در عملیات تصفیه فاضلاب در مقایسه با آلوم و پلی‌آمینیم کلراید (یک) است.

روش بررسی: آزمایش‌های مربوط به لخته‌سازی و تغییر توان توسط دستگاه جاری انجم دوئرگفت. هم‌چنین انتخاب دو سیر پارامترهای کیفی فاضلاب توسط روش‌های موجود در کتاب استاندارد مند انجم گرفته. لازم به ذکر است، مشا فاضلاب استفاده شده در این مطالعه، فاضلاب خانگی است.

پایه‌های ما: بررسی تکنولوژی، دانشگاهی و یک در پودر دانه داد که در غلظت بهینه پرگرینا درصد زدایش کدپر، سختی کل، سختی کلسیم، سختی منیزیم، کل کلسیم، ها، انتهای اکسیژن به ترتیب برای ۱۰، ۱۵ و ۲۵ درصد است. با این حال، آزمایش‌های زدایش کدپر به‌طور مستقیم با درصد زدایش کل کلسیم و ها، طوری که از دستگاه دانشکده کشاورزی میزان زدایش کل کلسیم و ها به ترتیب ۷۸.۹۵ درصد است. در زمینه فاضلاب به‌ین میواد فک هنیف فاطمی تصفیه فاضلاب در محدوده استانداردهای محیط زیست جهت تخلیه به آب های سطحی، جاه جذب و

بیاناتی که در این پژوهش بیان شده است.

نتیجه‌گیری: نتایج بررسی از این تحقیق نشان داد که این نوبت به عنوان روش های آلایی به جز ابزارهایی به دلیل ایجاد شرایط در یک یا پرگرینا (با یک دستگاه اکسیژنکاری یکی از میزان زدایش کل کلسیم، ها، کل کلسیم، ها) با توجه به هزینه که دانه‌های پرگرینا و عمده‌کردن خوب آن در عملیات تصفیه پیشنهاد می‌شود که از این روش به عنوان یکی از روش‌های بهینه پرگرینا برای پلی‌آمینیم کلراید و آلوم برای تصفیه فاضلاب استفاده گردد.

واژگان کلیدی: آلوم، پلی‌آمینیم کلراید، تصفیه فاضلاب، مورینگا پرگرینا

۱- دکترای هیدرولوژی، استادیار دانشگاه کشاورزی، دانشگاه بوغوزی، سیبی‌های همدان
۲- دانشجوی دکترای آب‌زیان و زیانشی، دانشگاه کشاورزی، دانشگاه فردوسی مشهد
۳- دکترای بهداشت حیات نهاد عالی، دانشکده کشاورزی، دانشگاه پزشکی همدان
۴- کارشناس ارشد‌اداره کل منابع طبیعی و آبخیزداری استان بوشهر
۵- دانشجوی کارشناسی ارشد دانشگاه کشاورزی، دانشگاه بوغوزی، سیبی‌های همدان

Downloaded from ijhe.tums.ac.ir at 6:11 IRST on Saturday November 2nd 2019
مقدمه

وجود ناخالقی های مطلق و کلیدی در آب که باعث ایجاد رنگ، بو و طعم نامطبوع آب می شوند، لزوم تحقیق آب را مطرح می کند. این ناخالقی ها به کمک عمل صاف کردن، قبل وقف نیستند. لذا از روشن اعماق و لخته سازی برای حذف آنها استفاده می شود. افزودن یک منطقه معقدنگی به آب باعث خسته شدن بار دیگر کلیوئید شده، این ذرات با نزدیک شدن به هم در ناحیه دارند و در زیر ری ایجاد می کنند. لذا استفاده از این مواد می تواند کارایی بالایی در حدود مواد مکث و کدکزس از محلول های آبی داشته باشد. (۱) هم چنین با توجه به اینکه وجود پساب در حوضه اکثر مکثه هر گونه مستقیم در روند رشد و توسعه بهداشت است، لذا در صورت استفاده بهینه از آن در راستای کشاورزی حاضر هر امکان افزایش سطح عملکرد نیاز وجود دارد. (۲) بسیاری از اهلی رستاکی تصویر کشورهای در حال توسعه (خصوصا افریقا و آسیا) موجب نهایتاً بار آب مورد نیاز (کشاورزی و ایجاد آب) از منابع آب های مکثر و هم چنین فراق دستی استفاده می نمایند که غالباً بسیار کم آب از نظر مکثر آنها هستند. اهلی این رستاها در طی فرآیند متفاوت یا برهان است که بعضی از گیاهان قدرت تصفیه آب مصرف کرده و آب را دارد. این گیاهان محلی نفت نیز دقیق در اندازه و تهیه ناخالقی های آب هستند بنابر از نظر اقتصادی نیز می تواند کم بسیار موثری در جلوگیری از افزایش هزینه ارزی برای واژد کردن مواد شیمیایی معقدنگی را در صنعت تصفیه آب مثل سولفات آلومنیوم (آلوم) و غیره. (۳)

طی فرآیند انگیزه از مواد معقدنگی و کمک معقدنگی مختلفی استفاده می شود. موارد معقدنگی شامل موارد هستند که جهت پاک‌دار سازی ذرات و قیمت‌دهی آنها به کمک ایز. استفاده می شود. در حالی که هدف از اضافه کردن مواد کمک معقدنگی افزایش دانسته ذرات به هم چسبیده و کمک به تهیه ارثیه از آنها است. در طی سال های اخیر تحقیقات کسترهای یپرایون فراوان انگیزه تصفیه صورت پذیرفته و

\[\text{موفقیت} \]

مواد معقدنگی متفاوت بررسی قرار گرفته اند. در حال حاضر سولفات آلومنیوم و کارایی فیک از جمله رایج ترین معقدنگی‌های مورد استفاده در تصفیه آب به منظور حذف کدورت را مانند: ترکیب پلی آلومنیوم کلراید (پک) با فرمول \(\text{Al(OH)}_3 \cdot \text{Cl}_2 \) با فرمول مشابه \(\text{NH}_4 \cdot \text{Cl} \) است که در سال‌های اخیر به طور وسیعی مورد استفاده قرار گرفته‌است. اگرچه این مصرف به شدت، این مواد می‌توانند به گونه‌ای باعث شده شده شد که محور بولند، لحن به می‌ریزید. Lدانشنامه علوم زیستگرایشی}
حسین بازدار و همکاران

این تجربه را از مقدار ۶ میلی گرم در لیتر آب (NTU) کاهش دهد در این حالت راندمان کاهش به ۶/۹۶ درصد می‌باشد. مقدار ۸۰ زنای ۱۵ به ۸/۵ میلی واحد آب‌زدایی می‌باشد. مقدار ۴۰ میلی گرم در لیتر پودر دانه موریگا قرار است که کاهش در این حالت به ۷/۹۳ (NTU) کاهش دهد.

۴۴ درصد از اکسیژن مورد نیاز شیمیایی را نهایت می‌نمود. کتاب‌های و همکاران ناگهان نشان داده دانه‌های همانی مواد از اکسلین سایز پرسی نمودند (۹). این نتایج به چهار شرایط نهایی دانه‌های کربن نسبت نشان می‌دهد. این نتایج نسبت به دانه‌های کربن یافته است. لیو و همکاران عاملکره آلام را در مقابل دانه‌های موریگا به ترتیب کاهش کم‌نمایی آب تری نسبت به پودر خاکی موریگا و عاملکره دانه‌های موریگا در کاهش فسفات، اکسیژن مورد نیاز شیمیایی، نیترات و نیتریژئ نمی‌نمود. آب تری از آلام این و همین عاملکره آلام و پودر دانه‌های موریگا در کاهش کلینیک نمودن آب تری برای کسان است. لیو و همکاران عاملکره آلام را در مقابل دانه‌های موریگا به ترتیب ۲/۷ و ۲/۷ مکلولی از هر دو بود که به ترتیب کاهش تری آنها در تریب (۷/۹۳) NTU مقدار ۱۵۰ میلی‌گرم پودر دانه موریگا استفاده شده و میزان حذف کدورت ۷۹ درصد می‌باشد. در حالی که برای کدورت زیاد (۹۹/۴ مقدار ۳۰۰ میلی‌گرم پودر دانه موریگا استفاده شد و میزان کاهش کدورت ۸۹ درصد بود و در کدورت خیلی زیاد (۹۹/۴ مقدار ۴۰۰ میلی‌گرم در لیتر پودر دانه موریگا استفاده شد و میزان کاهش کدورت ۹۴ درصد بود.

همین کتاب‌های و همکاران عاملکره آلام و دانه‌های موریگا را در کاهش کدورت آب مورد ارزیابی قرار دادند (۹). این تجربه را به همکارها و همکاران آموزش می‌دهد.
مواد و روش‌ها
دانه‌های خشک شده مورینگا پرگنی پس از حدود ۴ ماه از مرحله کلیه به عنوان دانه‌های رسیده جمع‌آوری شدند.
پس از آن، توجه داشت که تعدادی از نظریه‌های کرم‌‌ها، دنیا، و ارزیابی پرهیزگان باشند. برای اطمینان از خشک شدن دانه‌ها، یک راه تهیه پودر دانه‌های آوری شده را به مدت ۵ ساعت در انرژی ۳۵ درجه سانتی‌گراد قرار داده شد. دانه‌ها به صورت دستی پوست کن و سپس با خریدن مولیکس به صورت پودر در می‌آمد و به اندازه تقییری ۶ میکرومتر تبدیل شدند. به منظور ایجاد عصاره از مقادیر مختلف پودر دانه‌ها به نهایی و هم‌چنین در ترکیب با آلوم نازک سفید و بلی آلومینیوم کراید استفاده گردید. برای این کار ۱ کرم از پودر به مقدار ۲ در انسداد آب تعداد ۴۰۰ میکرومتر عصاره ایجاد شده از کاغذ فیبر با قطر روزنه ۹ میکرومتر محلول در هم گی و فاقد ذرات بوده باشد به دست آمده است. به عنوان مقادیر دانه‌های شده. از استانداردهای عصاره ایجاد شده از تایه آماده شود و هم‌چنین بیان جولگری از تغییرات و گراندیو، ترچجا محلول باید در چاه خنک pH (سایه) با حداکثر دما ۲۰ درجه سانتی‌گراد نگه داشته شود.
نمونه فاضلاب خام به صورت روانه در زمان انجام آزمایش جاری از روندهایی واقع در بخش دانشگاه کشاورزی دانشگاه بوعلی سینا جمع آوری گردید. بر طبق آزمایشات اولیه انجام شده بر روی فاضلاب خام، فاضلاب مورد استفاده در محدوده فاضلاب های متوسط بود. برخی از خصوصیات اولیه فاضلاب در جدول ۱ ذکر شده است.

جدول ۱: برخی از خصوصیات فاضلاب مورد استفاده

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>8</td>
</tr>
<tr>
<td>TDS</td>
<td>5۲۰۰</td>
</tr>
<tr>
<td>EC</td>
<td>۸</td>
</tr>
<tr>
<td>درکورت (NTU)</td>
<td>۱۲</td>
</tr>
<tr>
<td>دما</td>
<td>۸۳۳</td>
</tr>
<tr>
<td>کیلوگرم در لیتر (mg/l)</td>
<td>۲۵۰۰</td>
</tr>
<tr>
<td>کیلوگرم در لیتر (mmoh/cm)</td>
<td>۸</td>
</tr>
</tbody>
</table>

شایان ذکر است که روش‌های اندازه‌گیری پرامترهای کیفی نیز کلا بر اساس دستورالعمل‌های موجود در کتاب استاندارددند بوده است (۱۳). لازم به ذکر است که برای جولگری از اشتباهات انسانی و سیستماتیک، آزمایش‌ها به تعداد سه تکرار انجام پذیرفت.
زدایش کدورت توسط پرگرینا

بهترین عملکرد را دارد. در مقابل ترکیب ۱۵ میلی‌گرم در لیتر پرگرینا بهترین عملکرد کلاس ب‌پرگرینا با ۵۰ میلی‌گرم در لیتر پرگرینا نیز دارای عملکرد خوبی است. با این توجه داشته که ترکیب غلظت‌های ۱۰، ۱۵ و ۲۰ میلی‌گرم در لیتر آلومینیم کلاس ب‌پرگرینا در لیتر پرگرینا مقدار تقریباً یکسان هستند و ترکیب این مواد با هم، موجب افزایش عملکرد محسوسی نیستند. لیکن استفاده از ترکیب این مواد با هم در فرآیند تصفیه باعث کاهش زمان تنشی به میزان ۲۰ دقیقه گردید. به طوری که زمان تنشی از ۳۰ به ۱۰ دقیقه رسید.

کاهش مختص

درصد کاهش مختص توسط میزان های مختلف پرگرینا در شکل ۱ مشاهده می‌شود. بهترین درصد کاهش سختی کل، کلسیمی و منیزیمی به ترتیب در غلظت‌های ۱۰، ۱۵ و ۲۰ میلی‌گرم در لیتر پرگرینا مشاهده گردید. در غلظت‌های با درصد کاهش سختی به ترتیب برابر ۸۷/۳ درصد (سختی کل)، ۹۵/۵۵ درصد و ۱۰۰ درصد پرگرینا در لیتر آلومینیم کلاس ب‌پرگرینا در لیتر پرگرینا با مقادیر مختلف آلومینیم با کاهش مختص استفاده شد. لازم به ذکر است کدورت اولیه در تمام آزمایش‌ها پیدا نمی‌شود. شکل ۳ بانک گر راندمان کاهش کدورت توسط ترکیب این مواد را ارائه می‌نماید. با توجه به شکل ۳

یافته‌ها

راندمان خذف کدورت توسط پرگرینا در شکل ۱ نشان می‌دهد که با توجه به این شکل، بیشترین راندمان کاهش کدورت توسط پرگرینا به رنگ‌های قرمز/پرگرینا حاصل گردید. هم چنین تا غلظت ۷۰ میلی‌گرم در لیتر پرگرینا نیز کاهش می‌شود. شاخص ذکر است که در غلظت‌های بالای پرگرینا تعیینات کاهش کدورت با افزایش میزان پرگرینا ناجی بوده و این تغییرات در سطح ۹۵ درصد معنی‌دار نیست. برای بررسی عملکرد ترکیب پرگرینا با آلومینیم (کلاس ب‌پرگرینا) از ترکیب ۵۰ میلی‌گرم در لیتر پرگرینا با مقادیر مختلف آلومینیم در لیتر پرگرینا مشاهده گردید. در غلظت‌های با درصد کاهش سختی به ترتیب برابر ۸۷/۳ درصد (سختی کل) ۹۵/۵۵ درصد و ۱۰۰ درصد پرگرینا در لیتر آلومینیم کلاس ب‌پرگرینا در لیتر پرگرینا بهترین عملکرد را دارد.
امکان منجی استفاده از دانه‌های مورینگا پرینگا....

(سختی کلسیم) و (4/5 درصد (سختی منیزم) است.

شکل ۵: بانگ روغن نمودار غلظت‌های توزیع سایر تیمارها است. با توجه به شکل ۵، غلظت‌های توزیع سایر تیمارها در غلظت‌های توزیع سایر تیمارها مشابه است. با توجه به شکل ۵، غلظت‌های توزیع سایر تیمارها در غلظت‌های توزیع سایر تیمارها مشابه است.

زداشت اشکال کلی و کل کلیفراها

درصد زداشت اشکال کلی و کل کلیفراها در شکل ۶ نشان داده شده است. بر اساس شکل ۶، بیشترین درصد رشد زداشت اشکال کلیفراها در غلظت‌های 25 میلی‌گرم در لیتر آب است. مشاهده شد که رشد زداشت اشکال کلیفراها در غلظت‌های 25 میلی‌گرم در لیتر آب بیشتر است.

شکل ۶: درصد کاهش کدی در غلظت کلیفراها با آب و پلی ائومینیم کلراید (پک)

شکل ۷: درصد کاهش کدی در غلظت کلیفراها با آب و پلی ائومینیم کلراید (پک)
بحث و نتیجه‌گیری

همانطور که مشاهده می‌گردد در غلظت های بالای پرگرینا به دلیل این که مقدار مازاد پودر در لخته سازی شرکت نمی‌کند، لذا این مقدار مازاد باعث افزایش کدورت می‌گردد. بر این اساس به دست آوردن میزان بهینه پرگرینا برای کسب بالاترین راندمان بسیار ضروری است. شکل 2 بیانگر درصد کاهش کدورت توسط آلوم و پلی آلومینیم کلاژن می‌باشد. با توجه به شکل 2 میلی گرم در لیتر آلوم بهترین عملکرد را در کاهش کدورت داراست، به طوری که راندمان حذف کدورت 99.5 درصد بود. در مقابل بیشترین راندمان کاهش کدورت در زمان استفاده از پلی آلومینیم کلاژن در 15 میلی گرم در لیتر یک مشاهده گردد. در این غلظت راندمان کاهش کدورت برابر 99 درصد بود. باید مذکر شد که غلظت‌های درصد کдорت در غلظت‌های بالای این مقادیر در سطح 95 درصد معنی‌دار نیست. شایان ذکر است که در بهترین غلظت‌های منعقد‌کننده کدورت نهایی در زمان
امکان سنجی استفاده از داده‌های مورینگا پرتگیز

شکل ۵: روند تغییرات غلظت سختی در غلظت‌های مختلف معقد کننده

شکل ۶: راندمان زدایش کلیفرام ها
References:

Possibility of Using Moringa Peregrina Seeds Compared with Alum and Poly Aluminum Chloride in Sewage Treatment

*Banejad H. 1, Yazdani V. 1, Rahmani A.R. 2, Mohajeri S. 3, Olyaie E. 1
1Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamadan, Iran
2Department of Environmental Health Engineering, Hamadan University of Medical Science, Hamadan, Iran
3Department of Natural Resources and Watershed Management in Bushehr, Bushehr, Iran

Received; 1 May 2010 Accepted; 19 July 2010

ABSTRACT

Backgrounds and Objective: In arid and semi-arid regions of the world, urban runoff as a source of water restoration and is considered valuable. Wastewater treatment, while preserving the environment, it can be considered as water source. The aim of this study to evaluate the possibility of using powder grain Peregrina in wastewater treatment in comparing with Alum and Ploy Aluminum Chloride (PAC).

Materials and Methods: Flocculation and coagulation tests were done by Jar test. Wastewater quality parameters were measured according to standard method.

Results: Studies have been showed that in optimum Peregrina concentration, efficiency of turbidity reduction, total hardness, calcium hardness, magnesium hardness, total E. Coli are 95.11, 38, 55.5, 46.6, 97 and 97 percent respectively. It is noted that turbidity reducing directly related with coli form reduction. As, with increasing turbidity reduction, coliform reduction is increased. The most reduction of E. coli with combination of Alum, Ploy Aluminum Chloride and Peregrina was 100 percent. In optimum concentration of Alum, Ploy Aluminum Chloride and Peregrina, the quality of treated wastewater would be in the range of environmental standards. Therefore, treated wastewater can be entering to surface water and reuse as irrigation water.

Conclusion: The results derived from this study showed that the treated wastewater can be use in a variety of irrigation except sprinkler irrigation due to burn the leaves of plants. (high electrical conductivity). Also, the low cost of seed Peregrina and good performance in the refining operations, it is suggested that Peregrina as a replacement for poly aluminum chloride and an alum to be used for wastewater treatment.

Key words: Alum, Moringa Peregrina, Poly Alum Chloride, Wastewater treatment

*Corresponding Author: hossein_banejad@yahoo.com
Tel: +98 918 1118227 Fax: +98 0811 4223367