حذف زایلین از جریان هوای آلوده با استفاده از فرآیند از زنی کاتالیزوری

غلامرضا موسوی \ علی خوانی \ حمیدرضا مکرمی

نویسنده‌منش: تهران، تغییر بزرگ‌های جلال آل احمد و جمیران، دانشگاه تربیت مدرس، دانشکده علوم پزشکی

چکیده
زمینه و هدف: ترکیبات آلی فراری که از مندازی ترین گروه آلانده‌های متنسر شده از صنایع مختلف به صورت هوای آلوده موجود هستند. البته در اثر تخلیه در محیط پیوسته شوند. این مطالعه با هدف بررسی کارایی کریپ فعال، ازون و ترکیب
کریپ فعال و ازون (ازون زنی کاتالیزوری) در حذف گلوتئن‌های مختلف زایلین انجام شد.
روش بررسی: سیستم آزمایشگاهی مورد استفاده در این مطالعه شامل چهار تریک پرینکی، چهار تریک زایلین، دستگاه هوازی ازون و راکتور شیشه‌ای محور کریپ فعال بود. برای بررسی کارایی عملکرد سیستم‌ها بر حسب گازهای حذف و ظرفیت حذف به‌هم مقایسه گردید.

یافته‌ها: نتایج نشان داد که کارایی فرآیند ازون زنی در حذف زایلین بیشتر از کریپ فعال و ازون زنی به تنهایی بود. به طوری که زمان ظهور زایلین در حریق و ظرفیت حذف آن در شرایط مثال برای گلوتئن ۳۰۰ ppm در اثر فعالیت حذف کریپ فعال و ۲/۷ برای سیستم جذب روی کریپ فعال به تنهایی بود.

کریپ فعال در حضور ازون به عنوان کاتالیزور عمل کرده و باعث افزایش رامدن‌زا چرخه‌ای شد.

نتیجه‌گیری: سیستم ازون کاتالیزوری می‌تواند به عنوان روش مناسبی با کارایی بالا برای حذف زایلین از جریان‌های آلوده در غلظت‌های بالا استفاده شود. این سیستم به‌واسطه سیستم بی‌خانگی بین بخش کریپ فعال نسبت به شانه به ازون زنی کاتالیزوری استفاده شود.

واژگان کلیدی: ترکیبات آلی فرار، زایلین، جذب، کریپ فعال، ازون زنی کاتالیزوری

۱- دکترای بهداشت محیط، استادیار دانشکده علوم پزشکی، دانشگاه تربیت مدرس
۲- دکترای بهداشت حرفه‌ای، استادیار دانشکده علوم پزشکی، دانشگاه تربیت مدرس
۳- کارشناس ارشد بهداشت حرفه‌ای، دانشکده علوم پزشکی، دانشگاه تربیت مدرس
Methane (Volatile Organic Compounds)
حذف زاپین از جریان های هواي الوده

یافته ها
کارایی کربن فعال در حذف زاپین
نتایج کارایی کربن فعال به تنهایی در حذف زاپین در شکل 2 نشان داده شده است. در این مطالعه از آزمایش‌های تکرار گذار بر کارایی سیستم (۵۰۵۰°C، دبی جریان هواي ویورده به راکتور: ۰/۱۷ لیتر/مین، ۱۰۰،۰۰۰ طویلت نسبی: 1) ثابت نگه داشته شد و فقط کارایی سیستم بر میزان غلظت های مختلف زاپین مورد بررسی قرار گرفت. نتایج نشان می‌دهد که با افزایش غلظت زاپین از ۵۰ به ppm ۳۰ نقطه شکست و زمان اشتعال کربن فعال کاهش یافته است.

محفوظه اختلاط بعده از دستگا های تریگر سرنگی تابعی گردد. همچنین سنجش میزان دقیق دیگر هوا از یک روتامتر کالیبره شده استفاده گردید. از کربن فعال ار انتقال ۲۳۸/۲ میلی متر (متر (۰/۱۰۰۰ سانتی‌متر) با سطح ویورده ساختمان مرکز به عوان کالیبرز استفاده شد. جهت حذف هر گونه آلودگي احتمالی و رطوبت از سطح کربن، قبل از استفاده از آن به مدت ۴ ساعت در دمای ۳۵۰ درجه سانتی‌گراد قرار داده شد. لازم به ذکر است در هر مخلوط از آزمایش، از ۱۰ کرم کربن فعال استفاده شد.

در این تحقیق به طور جداگانه کارایی کربن از کربن و ترکیب کربن فعال و از دید حذف زاپین مورد بررسی قرار گرفت. برای هر مرحله، کلیه آزمایش ها سهبار تکرار شد و میانگین

 Diet, Nutrition, and Health: A Global Perspective 2021
پژوهشی انجمن علمی بهداشت سلامت ایران
بحث و نتیجه‌گیری

این مطالعه با هدف بررسی کارایی فراورده‌ای از زنی کانالیزوری در حذف زایلین از چربی‌های آلوده انجام شد. برای نمایش بهتر اثر بخشی از زنی کانالیزوری، حذف زایلین سیستم از زنی تهای و کربن فعال نیز بررسی شد. نتایج نشان داد که این فعال‌ها این تحقیق نشان داد، راندمان حذف زایلین با استفاده از این شده به اندازه حذف زایلین کارایی از حذف زایلین کاهش یافته، به طوری که با افزایش غلظت راکتور از 50 به 100 ppm می‌باشد. با توجه به شکل 2، مشخص گردید که از 8/کاهش یافته، نتایج مطالعه ی Chao حذف تولید شان داد که کارایی از راه‌های 8/ بود که با داشتن مطالعه خواص مربوط مربوط دارد. (12) احتمالا که یکی از زمان‌های این مطالعه برای واکنش بین از زایلین مورد دیده اصلی این
حذف زایلین از جریان‌های هوای زمین

بوده است. در تحقیق مشخص می‌شود که زمان ظهور زایلین در خروجی از فرآیند کاتالیزور در شرایط محیط‌بیان برای فرآیند از زمین کاتالیزور بین تا یوزن است. به عنوان توجه به زمان برای غلظت در پراید از زمین کاتالیزور 200 ppm در پراید از زمین کاتالیزور نسبت به بین فعل نتیجه افزایش به‌افته است. به طور متوسط، در بالاتر می‌باشد کارایی 23 برای مشاهده در سطح زایلین بوده است، به طوری که در پیش‌بینی از فرآیند غلظت های بالاتری بین تر بوده است. بر اساس این شکل، در فرآیند 300 ppm می‌تواند به کارکرد که از هر یک از زمین کاتالیزور در غلظت 300ppm 24 کارایی می‌تواند کردن نهایی بوده است. به طور متوسط، در تمام غلظت‌های افزایش کاراکتر 3/3 برای مشاهده در سطح زایلین بوده است. بر اساس تحقیق تکنیکی از زمین کاتالیزور نسبت به کاراکتر کردن فعال به تهیه است. عوامل متعددی می‌تواند بر این افزایش کاراکتر تاثیرگذار باشد. در این ها بر روی خریداران در فرآیند از زمین کاتالیزور نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژن می‌شود. همین کردن فعل با اجای یک بستر محسوب می‌شود که در کاراکتر نسبت به بین فعال در فرآیند که در پیش‌بینی از زمین کاتالیزور جابجایی می‌تواند به انتها فعال اکسیژ
در خروجی فرآیند مشاهده نمی‌گردد. در واقع بیشتر این ترکیبات بسروی کاتالیزور جذب شده بودند (21). این ویژگی از دیگر امتیازهای این فرآیند نسبت به دیگر فرآیندهای تصفیه هواست.

در این مطالعه مشاهده گردید که، کارایی سیستم‌های کربن فعال و از این کاتالیزور کاهش می‌یابد (شکل های 2 و 3). این کاهش کارایی ممکن است به عنوان اشتعال جایگاه‌های فعال جذب سطحی و در نتیجه غیرفعال شدن کاتالیزور بر اثر جذب سطحی مولکول‌های $ CO$, $ CO_2$ و ترکیبات واسطه باشد.

(1-2). نتایج دقیق بر سر شکل های 3 و 4 نشان می‌دهد که، غلظت زایلین خروجی در سیستم‌های کربن فعال پس از اشتعال شدن با غلظت ورودی تقریباً برابر می‌شود. این در حالی است که در فرآیند از این کاتالیزور غلظت خروجی پس از اشتعال کمتر از ورودی بوده است. این امر نشان دهنده این هم‌افزایی کاربرد تاک کردن طی فاز اول کربن فعلی به عنوان کاتالیزور عمل نموده و باعث تجزیه مولکول‌های تازه رادیکال اکسیژن و مولکول اکسیژن $ O_2$ شود. این رادیکال‌ها باعث تشکیل تجزیه زایلین عبری از برتر کربن می‌شوند. پایه ورودی این مطالعه بر روی عملکرد فرآیند از این کاتالیزور با کاتالیزور کربن فعال

آکسیداسیون مستقیم:

(8)

$$AC-S^0 + Xylene \rightarrow CO_2 + H_2O + \text{intermediates}$$

(9)

$$AC-S + Xylene + O_2 \rightarrow CO_2 + H_2O + \text{intermediates}$$

(10)

$Xylene + O_2 \rightarrow CO_2 + H_2O + \text{intermediates}$

همان‌طور که در واقع های فوق دیده می‌شود، زایلین به دو روش آکسیداسیون غیرمستقیم (واکنش های 6 و 7) و نیز آکسیداسیون مستقیم با ازن (واکنش 9 و 10) در فرآیند از این کاتالیزور تجزیه و حذف می‌شود.

در واقع رادیکال‌های تولیدی این با ازن به باندهای $ CO$, $ CO_2$ و زایلین حذف کرده و باعث تجزیه آن به $ CO$, $ CO_2$ و $ C-H$ می‌شود (32). در صورت انجام واکنش کامل، محصول نهایی تجزیه زایلین، $ CO_2$ و $ H_2O$ خواهد بود.

در عمل، به علت واکنش ناقص، ترکیبات واسطه تولید می‌شود که به دلیل سطح ویژه بالایی کردن فعال، من توانند جذب آن شده و این امکان وجود دارد که مجدداً توسط رادیکال‌های تولید شده و با توسط ازن تجزیه شوند. نتایج تحقیقات نشان می‌دهد که در طی فرآیند جذب سطحی در فرآیند از این کاتالیزور، اثری از ترکیبات واسطه

![Graph](https://example.com/graph.png)

شکل 3. کارایی حذف زایلین در سیستم کربن فعال متفاوت غلظت های مختلف
در حذف فیل از فاضلاب شور، جاکی از آن است که کریم
فعال خاصیت کاتالیزوری خود را بعد از استفاده مجدد حفظ
می‌نماید (24). دلیل این مشاهده با غلیب بودن واکنش های
کاتالیزوری نسبت به واکنش های اکسیداسیون-جذب در
فرآیند از نظر کاتالیزوری و یا احیا و بازیابی مجدد کریم
فعال
توصف می‌گردد.
تحقیقات صورت‌گرفته نشان می‌دهد در فرآیند از نظر کاتالیزوری،
عولاوه بر این، مولکول اکسیژن نیز نقش مهمی در تجزیه مواد آلی فرار
دارد. اکسیژن ترکیبات و اساسه رادیکالی که یکی از دلال
غیرفعال شدن کاتالیزور است راکسید می‌کند (21).
\[
R^* + O_2 \rightarrow RO_2^* \rightarrow CO_2 + H_2O
\] (11)
در این معادله نشان دهنده ترکیبات و اساسه رادیکالی است.
علاوه بر این، در صورت حضور اکسیژن، میزان تجزیه از
برای اکسیداسیون مواد آلی فرار انرژی می‌پاید (25).
به طور خلاصه، نتایج این تحقیق نشان داد که استفاده از فرآیند
از نظر کاتالیزوری و ارتباط با کارآمدی و کاهشی بودن
*GAC GAC/O3

پرداخته نشده

= 200 ppm

C = 100 ppm

C = 50 ppm

\[
\begin{align*}
\text{مقدار زمان ظهور زاین در سیستم کریم فعال با فرآیند از نظر کاتالیزوری در مقدار زمان مختلف} \\
\text{در ساعت (h)}
\end{align*}
\]
معاینه مقایسه تأثیر دنیزکش در جدول‌های مختلف کنترل کننده سیستم در فعال‌بودن از دو کانال بسته‌بندی در کنترل‌های مختلف.

است. به علاوه، این سیستم می‌تواند به راحتی برای تبدیل وضعیت سیستم های جذب کردن فعال نشده مورد به از ازن زنی کاتالیزوری استفاده شود.

همچنین، برای واحد پیکال دو می‌تواند این سیستم برای دیگر مواد آلی فعالیت نتیجه نداشته باشد، به همراه آزمایش مشابه، ممکن است متغیر باشد، بنابراین برای تصمیم گیری این سیستم به ارزیابی های بیشتر تری نیاز.
24. Moussavi Gh, Khavanin A, Alizadeh R. The

Removal of Xylene from Waste Air Stream Using Catalytic Ozonation Process

*Moussavi G.R., Khavanin A., Mokarami H.R.
Department of Occupational and Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Received; 24 April 2010 Accepted; 24 July 2010

ABSTRACT

Backgrounds and Objectives: Volatile organic compounds (VOCs) are one of the common groups of contaminants encountered in the industrial activities, emitted through air stream into the atmosphere. To prevent the human and environmental health from the adverse effects of VOCs, air streams containing VOCs need to be treated before discharging to environment. This study was aimed at investigating the catalytic ozonation process for removing xylene from a contaminated air stream.

Materials and Methods: In the present work, a bench scale experimental setup was constructed and used for catalytic ozonation of xylene. The performance of catalytic ozonation process was compared with that of single adsorption and ozonation in removal of several concentration of xylene under the similar experimental conditions.

Results: The results indicated that the efficiency of catalytic ozonation was higher than that of single adsorption and ozonation in removal of xylene. The emerging time and elimination capacity of xylene for inlet concentration of 300 ppm was 1.4 and 5.8 times of those in adsorption system. The activated carbon acted as catalyst in the presence of ozone and thus attaining the synergistic effect for xylene degradation.

Conclusion: catalytic ozonation process is an efficient technique the treatment of air streams containing high concentrations of xylene. The adsorption systems can also be simply retrofitted to catalytic ozonation process and thereby improving their performance for treating VOCs.

Key words: Volatile organic compounds, Xylene, Adsorption, Activated carbon, Catalytic ozonation