حذف زاینل از جریان هوای آلوده با استفاده از فرآیند از رنگ کاتالیزوری

غلام‌رضا موسوی، علی خوانی، حمیدرضا مکرم
moussavi@modares.ac.ir
نویسنده مشاور: تهران، تکنولوژی پرکشال، آی. احمد و جراح، دانشگاه تربیت مدرس، دانشکده علوم پزشکی

چکیده

زمینه و هدف: ترکیبات آلی فراری که از متدالترین پایه‌های محتوایی محیط ناشی می‌باشد به صورت مختلف به صورت هواي آلوده هستند. هدف از ترکیبات آلی فراری که بررسی کارایی کربن فعال، از رنگ کاتالیزوری و ترکیب کربن فعال و اثر اندازه‌گیری (ارزی کاتالیزوری) در حذف گلوتنت، های مختلف زاینل انجم شد. بررسی پروری: سیستم آزمایشگاهی مورد استفاده در این مطالعه شامل چهار تریاک سینکی، بمب تریاک هوا، دستگاه مولت از و راکتور شیشه ای حاوی کربن فعال بود. برای بررسی کارایی عملکرد سیستم، به منظور زمان حذف و ظرفیت حذف با هم مقایسه کردیم. پایشگاه: نتایج نشان داد که کربن فعالی از رنگ زاینل بهتر تر از کربن فعال و از رنگ زنی به ته‌بندی بود، به طوری که زمان ظهور زاینل در حذف و ظرفیت حذف، آن در شرایط مشابه برای غلظت 300 ppm به ترتیب 1/4 و 2/8 برای سیستم جذب اکریل فعال به ته‌بندی بود. کربن فعال در حضور از رنگ غلظت کربن فعال، به افزایش زمان حذف گلوتنت از زاینل شده است.

نتیجه‌گیری: سیستم ارزی کاتالیزوری می‌تواند به عنوان روش مناسبی با کارایی بالا برای حذف زاینل از جریان هوای آلوده در غلظت های بالا استفاده شود. به‌طور کلی، بیرویت تبدیل وضعیت سیستم کربن فعال نسبت به کربن فعال، از رنگ کاتالیزوری استفاده شود.

واژگان کلیدی: ترکیبات آلی فراری، زاینل، جذب، کربن فعال، از رنگ کاتالیزوری

1- دکترای بیشماری استادیار دانشکده علوم پزشکی، دانشگاه تربیت مدرس
2- دکترای بیشماری استادیار دانشکده علوم پزشکی، دانشگاه تربیت مدرس
3- کارشناس ارشد بیشماری استادیار دانشکده علوم پزشکی، دانشگاه تربیت مدرس
مدخل، گستره‌ترین روش‌های تصفیه‌های حاوی ترکیبات فرار از هوا است (9). از همه تری‌مایع این روش کاهش کارایی آن در واحدهای سطحی به حال اشاعه بی‌پایان و سرعتی در تنظیم نیاز به احیای مکررآستانه و به دلیل افزایش هریزه است. همچنین فاکتورهای ناپایداری از هوا به روز جسد سطحی فقط باعث تغییر فاز آلایندگی از هوا به روز جسد بوده است. این سیستم‌ها مورد استفاده برای تصفیه مواد آلی فرار روش اکیداسیون شیمیایی به ویژه انتخاب از گاز آهن ایستاییت شده است. این گاز اکسیژن اکسیداسیون زیادی داشته و پیش ترکیبات آلی فرار را آکسید می‌کند و اکسیدوراز و دیگر محصولات جانبی اکسیداسیون تولید می‌کند. از جمله (10، 11) می‌توان به اثباتی این مطالعه می‌تواند تأثیر سلامتی جادو و اکسید آملا در فرضیاتی قدرتی گری در این مورد در هوا است. (12) تحقیق تأثیر صلح و مشترک در آلی فرار با استفاده از این درمان بوده و سطح از این میانه داخلاً مواد آلی فرار در صفحه سطحی برای سلامتی مشترک باشد.

این‌ها باید از روش‌های میزان جهت حذف آلایندگی آلی به ویژه آب بی‌پایانی افزایشی (خصوصاً در غلظت سطحی) استفاده کرده‌ی از این واحدهای سطحی از هوا به هزینه این تکنیک‌ها کاهش کارایی حذف جادو سطحی منابع می‌باید. (10، 11) مطالعه‌های نشان می‌دهد که این فاکتور تصفیه‌کننده، جادو سطحی ممکن است بر اساس این فاکتور به عنوان اکسیداسیون عمل نماید و باعث افزایش کارایی حذف جادو می‌شود. این در فاکتور بندربری از این دستیابی به اکسیدانکر (شکستن مولکولی حذف جادو) برای اکسیدوراز منابع آلی فرار می‌باشد (10، 10).

روش‌هایی که تاکنون برای حذف مواد آلی فرار از هوا می‌باشد (10، 11) به کار می‌روند. این مطالعه برای انتخاب اکسیداسیون کلیه که استفاده از آن به‌طور محدودی می‌کند. از جمله میدان‌ها در فاکتورهای می‌باشد (7، 8). درمانی جادوی متناسب‌کننده که در انرژی‌های حذف سطحی استفاده می‌شود، این فعال به علت سادگی کار با آن، هزینه‌های عملیاتی بی‌پایی و نیاز به افزایش محیط هوای آلی فرار از آن، به طور کلی گردیده برای حذف مواد آلی فرار از هوا آلوده در صفحات استفاده می‌باشد (1، 7). کارایی کردن این فعال به حذف آلایندگی از هوا آلوده در بهره‌ای از این خاصیت می‌باشد (7، 8).
حذف زايلن از جریان های هوای ادکلن

یافته ها

کارایی کربن فعال در حذف زايلن
نتایج کارایی کربن فعال به تهیه در حذف زايلن در شکل
۲ نشان داده شده است. در این مرحله از آزمایش متغیرهای
تاییرگذار بر کارایی سیستم (دما: ۱۵-۲۵ درجه سانتی‌گراد,
۱/۸ لیتری بادکوبه، ۱۰۰ کلوس: V/min، طعمیت نسبی: ۵%) تایب نگه داشته شد و فقط کارایی سیستم
بر میزان غلظت های مختلف زايلن مورد بررسی قرار گرفت.
نتایج نشان می‌دهد که با افزایش غلظت زايلن از ۴۰ ppm به
۳۰۰ ppm نسبت شکست و زمان اشباع کربن فعال کاهش یافته
است.

کارایی از در حذف زايلن
نتایج کربن از در تهیه در حذف زايلن در شکل
۲ نشان داده شده است. در این مرحله از آزمایش به طور ثابت از
۱۰۰ ppm برای غلظت های پایه کربن از مقدار مطلق مرحله قبل
ثابت نگه داشته شد. همان طور که در شکل ۱ مشاهده می
شود، راکدامان حذف زايلن با افزایش غلظت آن در ورودی از
۴۰ ppm به ۳۰۰ ppm به دست آمده است.

کارایی از زنی کالانیازور (کربن فعال و از) در حذف زايلن
نتایج کارایی فراوانی از ترکیبی کربن فعال و از در حذف زايلن
بر حسب غلظت خروجی و نتیجه شکست سیستم در شکل
۴

محفظه اخلاق باعث از دست دادن تکرر سرنگی نصیر گردد. هم
چنین جهت سنجش میزان دقیق دیبه هوای یک روتابیم کلیبره
شد استفاده گردید. از کربن فعال با اندازه ۲/۳۸ میلی متر
(۱۰۰ مسحه و روتوه ۵۰۰ مسحه شکست مرکز,
به عنوان کالانیازور استفاده شد. جهت حفظ هوای آلودگی
احتمالی و رطوبت از سطح قرن، قبل از استفاده از آن، به
مدت ۲ ساعت در دمای ۷۵ درجه سانتی‌گراد قرار داده شد.
لزوم به ذکر است در مرحله از آزمایش، از ۱۰ کربن کریم
فعال استفاده شد.

در این تحقیق به طور جداگانه کربن از و ترکیب
کربن فعال و از در حذف زايلن مورد بررسی قرار گرفت.
برای هر مرحله، کلیه آزمایش‌ها سه بار تکرار شد و میانگین

۲۴۲
نتیجه‌گیری: این مطالعه با هدف بررسی کارایی فرآیند زاین زنی کانالیزری در حفظ زاین از جریان هواي آلوده انجام شد. برای تشویق بهتر یادی‌ساختن از زنی کانالیزری، حفظ زاین در سیستم از زنی تهیه و در کریم فعال تهیه بررسی شد. نتایج این مطالعه نشان داد که رصدمان حفظ زاین با استفاده از آن به تهیه‌ی مصرف‌های مورد بررسی در این تحقیق پایین است و به طور میانگین کمتر از ۱۰٪ است. با توجه به شکل ۲ مشخص گردید با افزایش غلظت زاین: کارایی از زنی حفظ زاین کاهش یافته است. در پایان که با افزایش غلظت آن در ورودی راکتور از ۵۰ به ۲۰۰ ppm به ۸٪ کاهش یافته است. نتایج مطالعه ی نشان داد که کارایی از زنی به تهیه‌ی در حدود ۸٪ بود که با پایان‌های مطالعه حاضر مطابقت دارد (۲). احتمالاً کوتاهی بودن زمان ماند برای واکنش بین از زنی و زاین می‌تواند دلیل اصلی این

بحث و نتیجه گیری

کاهش کارایی باشد.

هم‌چنین یافته‌های این مطالعه نشان داد که هنگام استفاده از کریم فعال به تهیه‌ی، نقطه ظهور زاین در خروجی (نقطه شکست) با افزایش غلظت از ۳۰ به ۶ ppm رحیم داشته شد. بر اساس این مشکل نقطه شکست حفظ زاین در سیستم از زنی کانالیزری نسبت به سیستم

جذب روی کریم فعال به تهیه اندازه‌ی دیبرت اندازه‌ی می‌افتد.
جدب شده بر روی جاذب سطحی می‌شود. نتایج تحقیقات نشان می‌دهد که در فرآیند ازون زنی کاتالیزوری و در اثر اکتیوراسیون (رادیکال‌ها یا اکسیژن) تجزیه می‌شود.

ابن رادیکال‌ها باعث اکتیوراسیون مولکول‌های اتان، بروز، و بوکسین را می‌کند. تجزیه می‌شود:

\[O_2 + AC-s \rightarrow AC-S^0 + O \]

\[AC-S^0 + O_2 \rightarrow AC-S^0 + O_2 \]

\[AC-S^0 + O_2 \rightarrow AC-S^0 + O \]

در این معادلات، AC-S به ترتیب نشان‌گر جاذب سطحی‌های ایجاد شده در جاذب سطحی و مولکول‌های اتان، بروز، و بوکسین به عنوان مولکول‌های کوئینیک آکسید سطحی‌ها و AC-S به عنوان مولکول‌های اتان، بروز، و بوکسین به عنوان مولکول‌های کوئینیک آکسید سطحی‌ها و می‌تواند با مولکول‌های موجود در بخار آب در هوا ورودی، واکنش داده و در طبق واکنش بایش از تجزیه مولکول‌های اتان، بروز، و بوکسین (OH) به‌صورت سطحی می‌شود.

درک نموده و باعث افزایش کارایی حذف می‌گردد:

\[AC-S^0 + H_2O \rightarrow AC-S(OH)^- \]

با عبور هوا خانه زایلین و از تاماس آن با بسته، واکنش‌های کاتالیزور شده فوق انجام شده و زایلین طبق واکنش‌های کلی زیر تجزیه می‌شود. در فرآیند ازون زنی کاتالیزوری، در صورت واکنش کامل کاهن‌الن (C, H, O) با رادیکال‌های حاوی از تجزیه از جمله

\[\text{وزیر باذگی: اکسیداسیون غیر مستقیم:} \]

\[AC-S^0 + Xylene \rightarrow CO, H_2O + \text{intermediates} \]

\[AC-S(OH)^- + Xylene \rightarrow CO, H_2O + \text{intermediates} \]
در خروجی فرآیند مشاهده نمی‌گردد. در واقع بخش تر ان ترکیبات بسیاری کاتالیزور جذب شده بودند (21). این ویژگی از دیدگاه امتصا‌های این فرآیند نسبت به دیگر فرآیندهای تصفیه هواستان متفاوت است.

(12) نگاه دقیق تر به شکل‌های 3 و 4 نشان می‌دهد که علت اشباع کارایی تر ان فعال پس از اشباع شدن با غلظت Xylene در سیستم کربن فعال 1/ اشباع شدن با غلظت ورودی تقریباً برابر شد. این در حالی است که در فرآیند از زنی کاتالیزوری غلظت خروجی پس از اشباع کمتر از ورودی بوده است. این امر نشاندهد اثر هم‌افاژی کاربرد توان کربن فعال و از اشباع کردن فعال به عنوان کاتالیزور عمل نموده و باعث تجزیه مولکول های از بین رادیکال اکسیژن و مولکول اکسیژن می‌شود. این رادیکال ها باعث تشکیل تجزیه Xylene عبوری از بستر کربن می‌شوند. به همین دلیل این مطالعه بر روی عملکرد فرآیند از زنی کاتالیزور با کاتالیزور کربن فعال گزارش گردید.

\\(\text{AC-S}^\alpha + \text{Xylene} \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{intermediates} \) (8)

\\(\text{AC-S} + \text{Xylene} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{intermediates} \) (9)

\\(\text{Xylene} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{intermediates} \) (10)

همان طور که در واقع این فرق دیده می‌شود، زاپ این به دو روش اکسیداسیون غیرمستقیم (واکنش‌های 6 و 7) و نیز اکسیداسیون مستقیم با از ازن (واکنش‌های 9 و 10) در فرآیند از زنی کاتالیزوری تجزیه و حذف می‌شود. در واقع رادیکال‌های تولیدی با از ازن به انتهای CO\(_\text{2}\) و C-H و زاپ این حمله کرده و باعث تجزیه آن به H\(_2\)O و می‌شود (22). در صورت انجام واکنش کُمال، CO\(_\text{2}\) و H\(_2\)O در محلول نهایی تجزیه زاپ و خواهد بود.

در عمل به علت واکنش ناقص، ترکیبات واسطه نیز تولید می‌شود که به دلیل سطح ویژه بالایی کربن فعال، می‌توانند جذب آن شده و این امکان وجود دارد که محدود توسط رادیکال‌های تولید شده و يا توسط ازن تجزیه شوند. نتایج تحقیقات غلظت می‌دهد که در فرآیند جذب سطحی در فرآیند از زنی کاتالیزوری، اثری از ترکیبات واسطه

\[\text{C%= 300 ppm} \]
\[\text{C%= 200 ppm} \]
\[\text{C%= 100 ppm} \]
\[\text{C%= 50 ppm} \]

![شکل 3: کارایی حذف زاپ این در سیستم کربن فعال و غلظت های مختلف](image-url)
در حذف فیل از فاضلاب‌شور، حاکی از آن است که کربن فعال خاصیت کاتالیزوری خود را بعد از استفاده مجددا حفظ می‌نماید (۲۴). دلیل این مشاهده با غلیب بودن واکنش‌های کاتالیزوری نسبت به واکنش‌های اکسیداسیون-جذب در فراپید از این نتیجه می‌رسد که واکنش‌های اکسیداسیون و اجرا و بازیابی مجدد کربن فعال توصیف می‌گردد.

تحقیقات صورت‌گرفته نشان می‌دهد فراپید از این نتیجه می‌رسد که واکنش‌های اکسیداسیون و اجرا و بازیابی مجدد کربن فعال توصیف می‌گردد.

در حذف فیل از فاضلاب‌شور، حاکی از آن است که کربن فعال خاصیت کاتالیزوری خود را بعد از استفاده مجددا حفظ می‌نماید (۲۴). دلیل این مشاهده با غلیب بودن واکنش‌های کاتالیزوری نسبت به واکنش‌های اکسیداسیون-جذب در فراپید از این نتیجه می‌رسد که واکنش‌های اکسیداسیون و اجرا و بازیابی مجدد کربن فعال توصیف می‌گردد.

تحقیقات صورت‌گرفته نشان می‌دهد فراپید از این نتیجه می‌رسد که واکنش‌های اکسیداسیون و اجرا و بازیابی مجدد کربن فعال توصیف می‌گردد.

تحقیقات صورت‌گرفته نشان می‌دهد فراپید از این نتیجه می‌رسد که واکنش‌های اکسیداسیون و اجرا و بازیابی مجدد کربن فعال توصیف می‌گردد.

تحقیقات صورت‌گرفته نشان می‌دهد فراپید از این نتیجه می‌رسد که واکنش‌های اکسیداسیون و اجرا و بازیابی مجدد کربن فعال توصیف می‌گردد.
می‌تواند یک روش موثر برای حذف مواد آلی فرار برای صنایع باشد.

به‌هر حال کارایی این سیستم برای حذف مواد آلی فرار تحت شرایط آزمایشی مشابه، ممکن است متغیر باشد، بنابراین برای تصدیق کارایی این سیستم به ارزیابی های بیشتری نیاز است.
24. Moussavi Gh, Khavanin A, Alizadeh R. The

Removal of Xylene from Waste Air Stream Using Catalytic Ozonation Process

*Moussavi G.R., Khavanin A., Mokarami H.R.
Department of Occupational and Environmental Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Received; 24 April 2010 Accepted; 24 July 2010

ABSTRACT

Backgrounds and Objectives: Volatile organic compounds (VOCs) are one of the common groups of contaminants encountered in the industrial activities, emitted through air stream into the atmosphere. To prevent the human and environmental health from the adverse effects of VOCs, air streams containing VOCs need to be treated before discharging to environment. This study was aimed at investigating the catalytic ozonation process for removing xylene from a contaminated air stream.

Materials and Methods: In the present work, a bench scale experimental setup was constructed and used for catalytic ozonation of xylene. The performance of catalytic ozonation process was compared with that of single adsorption and ozonation in removal of several concentration of xylene under the similar experimental conditions.

Results: The results indicated that the efficiency of catalytic ozonation was higher than that of single adsorption and ozonation in removal of xylene. The emerging time and elimination capacity of xylene for inlet concentration of 300 ppm was 1.4 and 5.8 times of those in adsorption system. The activated carbon acted as catalyst in the presence of ozone and thus attaining the synergistic effect for xylene degradation.

Conclusion: catalytic ozonation process is an efficient technique the treatment of air streams containing high concentrations of xylene. The adsorption systems can also be simply retrofitted to catalytic ozonation process and thereby improving their performance for treating VOCs.

Key words: Volatile organic compounds, Xylene, Adsorption, Activated carbon, Catalytic ozonation